Open Access
2015 A note on Ribaucour transformations in Lie sphere geometry
Jianquan Ge
Tohoku Math. J. (2) 67(2): 273-280 (2015). DOI: 10.2748/tmj/1435237043

Abstract

Following Burstall and Hertrich-Jeromin we study the Ribaucour transformation of Legendre submanifolds in Lie sphere geometry. We give an explicit parametrization of the resulted Legendre submanifold $\hat{F}$ of a Ribaucour transformation, via a single real function $\tau$ which represents the regular Ribaucour sphere congruence $s$ enveloped by the original Legendre submanifold $F$.

Citation

Download Citation

Jianquan Ge. "A note on Ribaucour transformations in Lie sphere geometry." Tohoku Math. J. (2) 67 (2) 273 - 280, 2015. https://doi.org/10.2748/tmj/1435237043

Information

Published: 2015
First available in Project Euclid: 25 June 2015

zbMATH: 1328.53016
MathSciNet: MR3365372
Digital Object Identifier: 10.2748/tmj/1435237043

Subjects:
Primary: 53C40
Secondary: 53A40

Keywords: Legendre submanifold , Lie sphere geometry , Ribaucour transformation

Rights: Copyright © 2015 Tohoku University

Vol.67 • No. 2 • 2015
Back to Top