Abstract
Following Burstall and Hertrich-Jeromin we study the Ribaucour transformation of Legendre submanifolds in Lie sphere geometry. We give an explicit parametrization of the resulted Legendre submanifold $\hat{F}$ of a Ribaucour transformation, via a single real function $\tau$ which represents the regular Ribaucour sphere congruence $s$ enveloped by the original Legendre submanifold $F$.
Citation
Jianquan Ge. "A note on Ribaucour transformations in Lie sphere geometry." Tohoku Math. J. (2) 67 (2) 273 - 280, 2015. https://doi.org/10.2748/tmj/1435237043
Information