Open Access
2014 On a certain nilpotent extension over $\boldsymbol{Q}$ of degree 64 and the 4-th multiple residue symbol
Fumiya Amano
Tohoku Math. J. (2) 66(4): 501-522 (2014). DOI: 10.2748/tmj/1432229194

Abstract

In this paper, we introduce the 4-th multiple residue symbol $[p_1,p_2,p_3,p_4]$ for certain four prime numbers $p_i$'s, which extends the Legendre symbol $\big(\frac{p_1}{p_2}\big)$ and the Rédei triple symbol $[p_1,p_2,p_3]$ in a natural manner. For this we construct concretely a certain nilpotent extension $K$ over $\boldsymbol{Q}$ of degree 64, where ramified prime numbers are $p_1, p_2$ and $p_3$, such that the symbol $[p_1,p_2,p_3,p_4]$ describes the decomposition law of $p_4$ in the extension $K/\boldsymbol{Q}$. We then establish the relation of our symbol $[p_1,p_2,p_3,p_4]$ and the 4-th arithmetic Milnor invariant $\mu_2(1234)$ (an arithmetic analogue of the 4-th order linking number) by showing $[p_1,p_2,p_3,p_4] = (-1)^{\mu_2(1234)}$.

Citation

Download Citation

Fumiya Amano. "On a certain nilpotent extension over $\boldsymbol{Q}$ of degree 64 and the 4-th multiple residue symbol." Tohoku Math. J. (2) 66 (4) 501 - 522, 2014. https://doi.org/10.2748/tmj/1432229194

Information

Published: 2014
First available in Project Euclid: 21 May 2015

zbMATH: 06431044
MathSciNet: MR3350281
Digital Object Identifier: 10.2748/tmj/1432229194

Subjects:
Primary: 11A15
Secondary: 11R32 , 57M27

Keywords: 4-th multiple residue symbol , Milnor invariant , Rédei triple symbol

Rights: Copyright © 2014 Tohoku University

Vol.66 • No. 4 • 2014
Back to Top