Open Access
2011 On nef and semistable hermitian lattices, and their behaviour under tensor product
Yves André
Tohoku Math. J. (2) 63(4): 629-649 (2011). DOI: 10.2748/tmj/1325886284
Abstract

We study the behaviour of semistability under tensor product in various settings: vector bundles, euclidean and hermitian lattices (alias Humbert forms or Arakelov bundles), multifiltered vector spaces.

One approach to show that semistable vector bundles in characteristic zero are preserved by tensor product is based on the notion of nef vector bundles. We revisit this approach and show how far it can be transferred to hermitian lattices. J.-B. Bost conjectured that semistable hermitian lattices are preserved by tensor product. Using properties of nef hermitian lattices, we establish an inequality in that direction.

We axiomatize our method in the general context of monoidal categories, and then give an elementary proof of the fact that semistable multifiltered vector spaces (which play a role in diophantine approximation) are preserved by tensor product.

References

1.

Y. André, Slope filtrations, Confluentes Math. 1 (2009), 1–85.  1213.14039 10.1142/S179374420900002X Y. André, Slope filtrations, Confluentes Math. 1 (2009), 1–85.  1213.14039 10.1142/S179374420900002X

2.

C. M. Barton, Tensor products of ample vector bundles in characteristic $p$, Amer. J. Math. 93 (1971), 429–438.  0221.14011 10.2307/2373385C. M. Barton, Tensor products of ample vector bundles in characteristic $p$, Amer. J. Math. 93 (1971), 429–438.  0221.14011 10.2307/2373385

3.

T. Borek, Successive minima and slopes of hermitian vector bundles over number fields, J. Number Theory 113 (2005), 380–388.  1100.14513 10.1016/j.jnt.2004.12.003T. Borek, Successive minima and slopes of hermitian vector bundles over number fields, J. Number Theory 113 (2005), 380–388.  1100.14513 10.1016/j.jnt.2004.12.003

4.

J.-B. Bost and K. Künnemann, Hermitian vector bundles and extension groups on arithmetic schemes. I. Geometry of numbers, Adv. Math. 223 (2010), 987–1106. J.-B. Bost and K. Künnemann, Hermitian vector bundles and extension groups on arithmetic schemes. I. Geometry of numbers, Adv. Math. 223 (2010), 987–1106.

5.

J.-B. Bost, H. Gillet and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), 903–1027. J.-B. Bost, H. Gillet and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), 903–1027.

6.

H. Brenner, Slopes of vector bundles on projective curves and applications to tight closure problems, Trans. Amer. Math. Soc. 356 (2003), 371–392. H. Brenner, Slopes of vector bundles on projective curves and applications to tight closure problems, Trans. Amer. Math. Soc. 356 (2003), 371–392.

7.

U. Bruzzo and D. Hernández Ruiprez, Semistability vs. nefness for (Higgs) vector bundles, Differential Geom. Appl. 24 (2006), 403–416. U. Bruzzo and D. Hernández Ruiprez, Semistability vs. nefness for (Higgs) vector bundles, Differential Geom. Appl. 24 (2006), 403–416.

8.

B. Casselman, Stability of lattices and the partition of arithmetic quotients, Asian J. Math. 8 (2004), 607–637.  1086.22007 10.4310/AJM.2004.v8.n4.a17 euclid.ajm/1118669693B. Casselman, Stability of lattices and the partition of arithmetic quotients, Asian J. Math. 8 (2004), 607–637.  1086.22007 10.4310/AJM.2004.v8.n4.a17 euclid.ajm/1118669693

9.

H. Chen, Maximal slope of tensor product of Hermitian vector bundles, J. Algebraic Geom. 18 (2009), 575–603.  1170.14013 10.1090/S1056-3911-08-00513-4H. Chen, Maximal slope of tensor product of Hermitian vector bundles, J. Algebraic Geom. 18 (2009), 575–603.  1170.14013 10.1090/S1056-3911-08-00513-4

10.

R. Coulangeon, Tensor products of Hermitian lattices, Acta Arith. 92 (2000), 115–130.  0951.11023 10.4064/aa-92-2-115-130R. Coulangeon, Tensor products of Hermitian lattices, Acta Arith. 92 (2000), 115–130.  0951.11023 10.4064/aa-92-2-115-130

11.

R. Coulangeon, Voronoi theory over algebraic number fields, Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math. 37 (2001), 147–162. R. Coulangeon, Voronoi theory over algebraic number fields, Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math. 37 (2001), 147–162.

12.

E. De Shalit and O. Parzanchevski, On tensor products of semistable lattices, preprint Univ. Jerusalem 2006 (available at http://www.ma.huji.ac.il/$\sim$deshalit/). E. De Shalit and O. Parzanchevski, On tensor products of semistable lattices, preprint Univ. Jerusalem 2006 (available at http://www.ma.huji.ac.il/$\sim$deshalit/).

13.

G. Faltings, Mumford-Stabilität in der algebraischen Geometrie, Proc. Intern. Congress Math. (Zürich 1994), 648–655, Birkhäuser, 1995. G. Faltings, Mumford-Stabilität in der algebraischen Geometrie, Proc. Intern. Congress Math. (Zürich 1994), 648–655, Birkhäuser, 1995.

14.

G. Faltings and G. Wüstholz, Diophantine approximations on projective spaces, Invent. Math. 116 (1994), 109–138. G. Faltings and G. Wüstholz, Diophantine approximations on projective spaces, Invent. Math. 116 (1994), 109–138.

15.

É. Gaudron, Pentes des fibrés vectoriels adéliques sur un corps global, Rend. Semin. Mat. Univ. Padova 119 (2008), 21–95. É. Gaudron, Pentes des fibrés vectoriels adéliques sur un corps global, Rend. Semin. Mat. Univ. Padova 119 (2008), 21–95.

16.

É. Gaudron, Géométrie des nombres adélique et formes linéaires de logarithmes dans un groupe algébrique commutatif, Mémoire d'habilitation 2009 (unpublished, available at http://www-fourier.ujf-grenoble.fr/$\sim$gaudron/). É. Gaudron, Géométrie des nombres adélique et formes linéaires de logarithmes dans un groupe algébrique commutatif, Mémoire d'habilitation 2009 (unpublished, available at http://www-fourier.ujf-grenoble.fr/$\sim$gaudron/).

17.

R. Grayson, Reduction theory using semistability, Comment. Math. Helv. 59 (1984), 600–634.  0564.20027 10.1007/BF02566369 R. Grayson, Reduction theory using semistability, Comment. Math. Helv. 59 (1984), 600–634.  0564.20027 10.1007/BF02566369

18.

D. Hoffmann, On positive definite Hermitian forms, Manuscripta Math. 71 (1991), 399–429.  0729.11020 10.1007/BF02568415 D. Hoffmann, On positive definite Hermitian forms, Manuscripta Math. 71 (1991), 399–429.  0729.11020 10.1007/BF02568415

19.

N. Hoffmann, Stability of Arakelov bundles and tensor products without global sections, Doc. Math. 8 (2003), 115–123.  1074.14022N. Hoffmann, Stability of Arakelov bundles and tensor products without global sections, Doc. Math. 8 (2003), 115–123.  1074.14022

20.

N. Hoffmann, J. Jahnel and U. Stuhler, Generalized vector bundles on curves, J. Reine Angew. Math. 495 (1998), 35–60.  0908.14011 10.1515/crll.1998.021N. Hoffmann, J. Jahnel and U. Stuhler, Generalized vector bundles on curves, J. Reine Angew. Math. 495 (1998), 35–60.  0908.14011 10.1515/crll.1998.021

21.

P. Humbert, Théorie de la réduction des formes quadratiques définies positives dans un corps algébrique $K$ fini, Comment. Math. Helv. 12 (1940), 263–306. P. Humbert, Théorie de la réduction des formes quadratiques définies positives dans un corps algébrique $K$ fini, Comment. Math. Helv. 12 (1940), 263–306.

22.

M. Icaza, Hermite constant and extreme forms for algebraic number fields, J. London Math. Soc. (2) 55 (1997), 11–22.  0874.11047 10.1112/S0024610796004668M. Icaza, Hermite constant and extreme forms for algebraic number fields, J. London Math. Soc. (2) 55 (1997), 11–22.  0874.11047 10.1112/S0024610796004668

23.

Y. Kim, On semistability of root lattices and perfect lattices, preprint Univ. Illinois 2009 (available at http://www.math.uiuc.edu/$\sim$ykim33/). Y. Kim, On semistability of root lattices and perfect lattices, preprint Univ. Illinois 2009 (available at http://www.math.uiuc.edu/$\sim$ykim33/).

24.

Y. Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in Math. 106, Cambridge Univ. Press, 1993. Y. Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in Math. 106, Cambridge Univ. Press, 1993.

25.

S. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. 84 (1966), 293–344.  0146.17001 10.2307/1970447S. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. 84 (1966), 293–344.  0146.17001 10.2307/1970447

26.

R. Lazarsfeld, Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals, Ergeb. der Math. und ihrer Grenzgebiete 49, Springer-Verlage, Berlin, 2004.  1093.14500 R. Lazarsfeld, Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals, Ergeb. der Math. und ihrer Grenzgebiete 49, Springer-Verlage, Berlin, 2004.  1093.14500

27.

J. Martinet, Perfect lattices in Euclidean spaces, Grundlehren Math. Wiss. 327, Springer-Verlage, Berlin, 2003.  1017.11031J. Martinet, Perfect lattices in Euclidean spaces, Grundlehren Math. Wiss. 327, Springer-Verlage, Berlin, 2003.  1017.11031

28.

M. Maruyama, The theorem of Grauert-Mühlich-Spindler, Math. Ann. (1981), 317–333. M. Maruyama, The theorem of Grauert-Mühlich-Spindler, Math. Ann. (1981), 317–333.

29.

Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985, 449–476, Adv. Stud. Pure Math. 10, North-Holland, 1987.  0648.14006Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985, 449–476, Adv. Stud. Pure Math. 10, North-Holland, 1987.  0648.14006

30.

A. Moriwaki, Relative Bogomolov's inequality and the cone of positive divisors on the moduli space of stable curves, J. Amer. Math. Soc. 11 (1998), 569–600.  0893.14004 10.1090/S0894-0347-98-00261-6A. Moriwaki, Relative Bogomolov's inequality and the cone of positive divisors on the moduli space of stable curves, J. Amer. Math. Soc. 11 (1998), 569–600.  0893.14004 10.1090/S0894-0347-98-00261-6

31.

A. Moriwaki, Arithmetic height functions over finitely generated fields, Invent. Math. 140 (2000), 101–142.  1007.11042 10.1007/s002220050358A. Moriwaki, Arithmetic height functions over finitely generated fields, Invent. Math. 140 (2000), 101–142.  1007.11042 10.1007/s002220050358

32.

M. Narasimhan and C. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965), 540–567.  0171.04803 10.2307/1970710 M. Narasimhan and C. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965), 540–567.  0171.04803 10.2307/1970710

33.

A. Pekker, On successive minima and the absolute Siegel's Lemma, J. Number Theory 128 (2007), 564–575.  1195.11085 10.1016/j.jnt.2007.04.013 A. Pekker, On successive minima and the absolute Siegel's Lemma, J. Number Theory 128 (2007), 564–575.  1195.11085 10.1016/j.jnt.2007.04.013

34.

S. Ramanan and A. Ramanathan, Some remarks on the instability flag, Tohoku Math. J. 36 (1984), 269–291.  0567.14027 10.2748/tmj/1178228852 euclid.tmj/1178228852 S. Ramanan and A. Ramanathan, Some remarks on the instability flag, Tohoku Math. J. 36 (1984), 269–291.  0567.14027 10.2748/tmj/1178228852 euclid.tmj/1178228852

35.

M. Rapoport, Analogien zwischen den Modulräumen von Vektorbündeln und von Flaggen (DMV Tagung, Ulm, 1995), Jahresber. Deutsch. Math.-Verein. 99 (1997), 164–180. M. Rapoport, Analogien zwischen den Modulräumen von Vektorbündeln und von Flaggen (DMV Tagung, Ulm, 1995), Jahresber. Deutsch. Math.-Verein. 99 (1997), 164–180.

36.

D. Roy and J. Thunder, An absolute Siegel lemma, J. Reine Angew. Math. 476 (1996), 1–26, addendum et erratum, ibid. 508 (1999), 47–51.  0860.11036D. Roy and J. Thunder, An absolute Siegel lemma, J. Reine Angew. Math. 476 (1996), 1–26, addendum et erratum, ibid. 508 (1999), 47–51.  0860.11036

37.

C. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. C. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95.

38.

U. Stuhler, Eine Bemerkung zur Reduktionstheorie quadratischen Formen, Arch. Math. 27 (1976), 604–610.  0338.10024 10.1007/BF01224726 U. Stuhler, Eine Bemerkung zur Reduktionstheorie quadratischen Formen, Arch. Math. 27 (1976), 604–610.  0338.10024 10.1007/BF01224726

39.

B. Totaro, Tensor products of semistables are semistable, Geometry and analysis on complex manifolds 242–250, World Sci. Publ., Singapore, 1994. B. Totaro, Tensor products of semistables are semistable, Geometry and analysis on complex manifolds 242–250, World Sci. Publ., Singapore, 1994.

40.

S. Zhang, Positive line bundles on arithmetic varieties J. Amer. Math. Soc. 8 (1995), 187–221. 0861.14018 10.1090/S0894-0347-1995-1254133-7S. Zhang, Positive line bundles on arithmetic varieties J. Amer. Math. Soc. 8 (1995), 187–221. 0861.14018 10.1090/S0894-0347-1995-1254133-7
Copyright © 2011 Tohoku University
Yves André "On nef and semistable hermitian lattices, and their behaviour under tensor product," Tohoku Mathematical Journal 63(4), 629-649, (2011). https://doi.org/10.2748/tmj/1325886284
Published: 2011
Vol.63 • No. 4 • 2011
Back to Top