Open Access
2005 PARTITION OF A SET OF INTEGERS INTO SUBSETS WITH PRESCRIBED SUMS
Fu-Long Chen, Hung-Lin Fu, Yiju Wang, Jianqin Zhou
Taiwanese J. Math. 9(4): 629-638 (2005). DOI: 10.11650/twjm/1500407887

Abstract

A nonincreasing sequence of positive integers $\langle m_1,m_2,\cdots,m_k \rangle$ is said to be $n$-realizable if the set $I_n = \{1,2,\cdots,n\}$ can be partitioned into $k$ mutually disjoint subsets $S_1,S_2,\cdots,S_k$ such that $\sum_{x \in S_i} x = m_i$ for each $1 \le i \le k$. In this paper, we will prove that a nonincreasing sequence of positive integers $\langle m_1,m_2,\cdots,m_k \rangle$ is $n$-realizable under the conditions that $\sum_{i=1}^k m_i = \binom{n+1}{2}$ and $m_{k-1} \ge n$.

Citation

Download Citation

Fu-Long Chen. Hung-Lin Fu. Yiju Wang. Jianqin Zhou. "PARTITION OF A SET OF INTEGERS INTO SUBSETS WITH PRESCRIBED SUMS." Taiwanese J. Math. 9 (4) 629 - 638, 2005. https://doi.org/10.11650/twjm/1500407887

Information

Published: 2005
First available in Project Euclid: 18 July 2017

zbMATH: 1093.11016
MathSciNet: MR2185406
Digital Object Identifier: 10.11650/twjm/1500407887

Subjects:
Primary: 05C70 , 11B75 , 90C35

Keywords: graph decomposition , integer partition , Partition

Rights: Copyright © 2005 The Mathematical Society of the Republic of China

Vol.9 • No. 4 • 2005
Back to Top