
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 9, No. 4, pp. 629-638, December 2005
This paper is available online at http://www.math.nthu.edu.tw/tjm/

PARTITION OF A SET OF INTEGERS INTO SUBSETS WITH
PRESCRIBED SUMS

Fu-Long Chen, Hung-Lin Fu, Yiju Wang and Jianqin Zhou

Abstract. A nonincreasing sequence of positive integers 〈m1, m2, · · · , mk〉
is said to be n-realizable if the set In = {1, 2, · · · , n} can be partitioned into
k mutually disjoint subsets S1, S2, · · · , Sk such that

∑
x∈Si

x = mi for each
1 ≤ i ≤ k. In this paper, we will prove that a nonincreasing sequence of
positive integers 〈m1, m2, · · · , mk〉 is n-realizable under the conditions that∑k

i=1 mi =
(
n+1

2

)
and mk−1 ≥ n.

1. INTRODUCTION

Given a set In = {1, 2, · · · , n}, it is interesting to know whether it can be
partitioned into k mutually disjoint subsets S1, S2, · · · , Sk such that the sums of
elements in Si’s are prescribed values. For example, can we partition I10 into five
sets of sum 11? Of course, the answer is affirmative. However, partitioning the set
I10 into 5 sets with prescribed sums 〈20, 17, 14, 2, 2〉 is impossible. Now, a question
is posed naturally: Under what conditions the set In has such a prescribed partition?
And if so, how to find it? This question has received considerable attention and
some effective partitioning methods are proposed in [2,4].

Now, we introduce some definitions and then give a brief retrospect to this issue.
A nonincreasing sequence of positive integers 〈m1, m2, · · · , mk〉 is said to be n-
realizable if In can be partitioned into k mutually disjoint subsets S1, S2, · · · , Sk

such that
∑

x∈Si
x = mi for each 1 ≤ i ≤ k. Obviously, if 〈m1, m2, · · · , mk〉

is n-realizable, then
∑k

i=1 mi =
(n+1

2

)
, and the converse may be not true. Some

sequences of total sum
(
n+1

2

)
are shown to be n-realizable which are listed below:

1. 〈m, m, · · · , m〉, where m ≥ n;
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2. 〈m, m, · · · , m, l〉, where m ≥ n and l ≤ m is an arbitrary positive integer
(see [2.4]);

3. 〈m + 1, · · · , m + 1, m, m, · · · , m〉, where m ≥ n (see [4]);
4. 〈m + k − 2, m + k − 3, · · · , m + 1, m, l〉, where m ≥ n and l is an arbitrary

positive integer ([4]);
5. 〈m1, m2, · · · , mk〉, where mk ≥ n (see [5]).

The definition of n-realizability is closely related to the concept of ascending
subgraph decomposition of a graph. A graph G with

(
n+1

2

)
edges is said to have

an ascending subgraph decomposition (ASD) if the edge set of G, E(G), can be
partitioned into n sets E1, E2, . . . , En which induce n graphs G1, G2, . . . , Gn such
that |Ei| = i for i = 1, 2, . . . , n and Gi is isomorphic to a subgraph of Gi+1 for
i = 1, 2, . . . , n − 1. Clearly, it is easy to see that a graph with small size has an
ASD. In [1,3], it was conjectured by Alavi et al that every graph of size

(
n+1

2

)
has

an ASD. Also in [1,3], they pose the following ASD conjecture on star forests.

Conjecture (Star forest) If G is a star forest with
(
n+1

2

)
edges and each

component has at least n edges, then G has an ASD such that each member of the
decomposition is a star.

This conjecture is equivalent to prove that Sequence 5 mentioned above is n-
realizable, and it is proved in [5] by Ma et al. In this paper, we shall prove the
following more general conclusion.

Theorem 1.1. Let 〈m1, m2, · · · , mk〉 be a nonincreasing sequence of positive
integers such that

∑k
i=1 mi =

(n+1
2

)
and mk−1 ≥ n. Then 〈m1, m2, · · · , mk〉 is

n-realizable.
The conclusion in this theorem is sharp in the sense that the condition m k−1 ≥

n can not be replaced by mk−2 ≥ n since 〈7, 6, 1, 1〉 and 〈6, 5, 2, 2〉 are not 5-
realizable. A partition algorithm will also be given in this paper.

Note that sets used in this paper are the sets in the sense that their any repeated
integers are taken as different elements. Also, the union of two multisets is also a
multiset. For example, {10, 10, 12}∪ {10, 12, 13}= {10, 10, 10, 12, 12, 13}.

2. DECOMPOSITION ALGORITHM

In this section, we would give a partition algorithm to prove that a nonincreasing
sequence of positive integers 〈m1, m2, · · · , mk〉 of total sum

(n+1
2

)
with mk−1 ≥ n

is n-realizable. We begin with some observations on mk and mk−1. If mk ≥ n,
then we have done by [5]. So we may assume that mk < n. If mk−1 = n, then
we can partition In−1 into k − 1 sets having sums m1, m2, · · · , mk−2, mk by the
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inductive hypothesis, and so we get the desired partition by combining these subsets
and setting Sk = {n}. Therefore, we may assume that mk−1 ≥ n+1 which implies
that mi ≥ n + 1 for all 1 ≤ i ≤ k − 1. Define

l = n − 2(k − 1), N = 2k + 2l − 1, M = m1.

Since

n(n + 1)
2

= m1 + m2 + · · ·+ mk ≥ (n + 1)(k − 1) + mk > (n + 1)(k − 1),

we have n > 2(k − 1). Therefore, l ≥ 1 and N = n + l + 1 ≥ n + 2.
Let

W =
[

u1 u2 · · · uM−k−l+1

v1 v2 · · · vM−k−l+1

]

be a 2 × (M − k − l + 1) array, where ui = N − M − 1 + i and vi = M + 1− i,
for 1 ≤ i ≤ M − k − l + 1. That is,

W =
[

N−M N−M+1 ··· −1 0 1 ··· k+l−2 k+l−1

M M−1 ··· N+1 N N−1 ··· k+l+1 k+l

]
.

It is easy to see that ui + vj = N + i − j for 1 ≤ i, j ≤ M − k − l + 1. The
array W plays an important role in our partition algorithm. From now on, we will
take each number in W as a vertex of a bipartite graph.

Our algorithm will repeatedly construct a directed bipartite graph Gt on the
vertices of W to obtain a desired partition of In. First, we define the following
three types of arcs: An arc (ui, vi) for 1 ≤ i ≤ M − k − l + 1 is called a vertical
arc; an arc (ui, vj) with i > j is called a down oblique arc; an arc (v j, ui) with
i < j is called an up oblique arc. For i > j, we call vertices vj+1, vj+2, · · · , vi

the down shadow vertices corresponding to the down oblique arc (ui, vj) and for
i < j, we call the vertices ui+1, ui+2, · · · , uj the up shadow vertices corresponding
to the up oblique arc (vj, ui), respectively. At any stage of the algorithm, a vertex
which is not incident with any arc is said to be unsaturated. On the other hand, a
vertex which is incident with an arc is said to be saturated. We define the following
multisets corresponding to the set At of integers:

(i) A0
t = {x ∈ At| x = N},

(ii) A+
t = {x ∈ At | x > N},

(iii) A−
t = {x ∈ At | x < N}.

The basic idea of our algorithm is as follows. First, set A−1 = ∅ and A0 = A =
{m1, m2, · · · , mk−1}, compute A0

0, A
+
0 , A−

0 , respectively. Then construct a bipartite
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graph G0 on the vertices of W and compute A0 which will be defined in Step 7
of the following algorithm. If A0 = A−1, then each number mr (1 ≤ r ≤ k − 1)
corresponds to an arc (ui, vj) or (vj, ui) in G0 in the sense that ui + vj = mr, we
obtain the desired partition and the algorithm terminates; otherwise, set A1 = A∪A0,
repeat this process until At+1 = At.

Now, we are ready to describe our algorithm formally.

Algorithm 2.1.

Step 0. Let A = {m1, m2, · · · , mk−1}, A−1 = ∅, A0 = A, t = 0.

Step 1. If |A0
t | = s ≥ 1, then add s vertical arcs (ui, vi) from the right-hand side.

Step 2. If A+
t �= ∅, then find the rightmost unsaturated vertex ui, add the arc

(ui, vj) such that i − j = min{y | y ∈ A+
t }, determine the set of down

shadow vertices corresponding to (ui, vj) and delete i− j from A+
t .

Step 3. If A−
t �= ∅, then find the rightmost unsaturated vertex vj and add an arc

(vj, ui) such that i − j = max{y | y ∈ A−
t }, determine the set of up

shadow vertices corresponding to (vj, ui) and delete i− j from A−
t .

Step 4. Repeat the following procedure until A+
t = ∅ or any up shadow vertex is

saturated. Find the rightmost unsaturated vertex ui and add an arc (ui, vj)
such that i − j = min{y | y ∈ A+

t }, determine the set of down shadow
vertices corresponding to (ui, vj) and delete i − j from A+

t .

Step 5. If A−
t �= ∅ and there exists an unsaturated down shadow vertex, then

find the rightmost unsaturated vertex vj , add an arc (vj, ui) such that
i − j = max{y | y ∈ A−

t } and delete i − j from A−
t , goto Step 4.

Otherwise, goto Step 6.

Step 6. If A+
t ∪ A−

t = φ, then we obtain a bipartite graph Gt, goto step 7;
otherwise, if A+

t �= φ, goto Step 2, if A−
t �= φ, goto Step 3.

Step 7. Compute the set At = {vj | vj > n and (ui, vj) ∈ Gt}.

Step 8. If At �= At−1, then set At+1 = A ∪ At, t = t + 1, and goto Step 1.

Step 9. If vj ≤ n for each arc (ui, vj) corresponding to an element of A, then
stop. Otherwise, find the corresponding arc of vj in graph Gt−1.

It is not difficult to see that the algorithm is well defined, that is, the algorithm
can be executed. In Section 3, we will show that the algorithm will terminate after
finite iterations. For clearness, we also include an example here.

Example: <30, 23, 21, 19, 17, 10>is 15-realizable. Let A = {30, 23, 21,19,17}.

Trial-decomp
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Input: A0 = A ∪ A−1 = A. Then n = 15, k = 6, l = 5, N = 21 and M = 30.

Output: A0 = {22} (A0 �= A−1 = ∅).
Input: A1 = A ∪ A0 = {30, 23, 22, 21, 19, 17}.

Output: A1 = {24}.

Input: A2 = A ∪ A1 = {30, 24, 23, 21, 19, 17}.

Output: A2 = {24, 16}.

Input: A3 = A ∪ A2 = {30, 24, 23, 21, 19, 17, 16}.

Output: A3 = {24, 16}.

A3 = A2 (While loop stops.).

Final-decomp

30 ∈ A ⊆ A3(In G3).

30 = 6 + 24, 24 > 15 and 24 ∈ A3 = A2 ⊆ A3.

Hence, 24 = 8 + 16, 16 > 15 and 16 ∈ A3 = A2 ⊆ A3.

Therefore, 16 = 1+15. This implies that S1 = {6, 8, 1, 15} and
∑

x∈S1
x = 30.
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Similarly, S2 = {9, 14}, S3 = {10, 11}, S4 = {7, 12}, S5 = {4, 13} and S6 =
{2, 3, 5}.

3. PROOF OF MAIN RESULT

It is easy to see that each vertex in Gt has the degree less than 1 and Algorithm
2.1 terminates whenever At = At−1. Therefore, in order to obtain the desired
partition, we have to make sure that after finite iterations, this happens. To prove
this, we give the following definition.

Definition 3.1. Let A = {a1, a2, · · · , ap} and B = {b1, b2, · · · , bq} be two
sets of integers such that all of their elements are arranged in a nonineasing order,
we say that A dominates B if (i) p ≥ q and (ii) ai ≥ bi, for 1 ≤ i ≤ q. In this case,
we denote A 
 B (or B ≺ A).

From this definition, we have the following result immediately.

Lemma 3.1. Let A, As and At be three sets of integers. If As 
 At, then
As ∪ A 
 At ∪ A.

Now, we explore the dominative relation between the sets At’s. For convenience,
we assume that all the elements in At and A+

t are arranged in a non-increasing order.

Lemma 3.2. At the s-th and t-th iteration of Algorithm 2.1, if A +
s 
 A+

t , A0
s =

A0
t and A−

s = A−
t , then As 
 At.

Proof. First, we give some notions. Let A+
s = {x1, x2, · · · , xp}, A+

t =
{y1, y2, · · · , yq} and A−

s = A−
t = {w1, w2, · · · , wr}. Since A+

s 
 A+
t , it holds

that p ≥ q and xi ≥ yi for 1 ≤ i ≤ q. For 1 ≤ i ≤ p and 1 ≤ j ≤ q, denote the arcs
in Gs and Gt corresponding to xi and yj by (uxi , vxi) and (uyj , vyj), respectively.
For 1 ≤ i ≤ r, denote the arcs in Gs and Gt corresponding to wi by as(wi) and
at(wi), respectively.

Now, we consider the case that p = q. In this case, since A+
s 
 A+

t , from Steps
from 1 to 6, we know that for 1 ≤ i ≤ r, the arcs as(wi) and at(wi) either have
the same position on the array W or as(wi) is to the left of at(wi) which in turn
deduces that either vxi , vyi have the same position or the vertex vxi is to the left of
vyi for 1 ≤ i ≤ p. Hence, vxi ≥ vyi for 1 ≤ i ≤ p and thus As 
 At.

Next, we consider the case that p > q. In this case, we construct a bipartite graph
Gs′ and the set As′ using Steps from 1 to 6 by inputting A+

s′ = {x1, x2, · · · , xq},
A0

s′ = A0
s and A−

s′ = A−
s . By the proved assertion for p = q, we know that

As′ 
 At. Since A+
s = A+

s′ ∪ {xq+1, · · · , xq}, and A0
s′ = A0

s, A−
s′ = A−

s , we can
easily deduce that As 
 As′ . So As 
 At.

Similarly, we have the following result.
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Lemma 3.3. At the s-th and t-th iteration of Algorithm 2.1, if A +
s = A+

t , A0
s =

A0
t and A−

s 
 A−
t , then As 
 At.

Using the lemmas above, we discuss the monotonicity of {At}.

Lemma 3.4. At the s-th and t-th iteration of Algorithm 2.1, if A s 
 At, then
As 
 At.

Proof. Let As = {a1, a2, · · · , ap} and At = {b1, b2, · · · , bq}. Since As 
 At,

one has p ≥ q and ai ≥ bi for 1 ≤ i ≤ q.
First, we consider the following two special cases.

Case 1. p = q + 1 and ai = bi for 1 ≤ i ≤ q. If ap < N , then A+
s =

A+
t , A0

s = A0
t and A−

s \ {ap − N} = A−
t . By Lemma 3.3, since A−

s 
 A−
t , it

holds that As 
 At. On the other hand, if ap > N , then A−
s = A−

t , A0
s = A0

t

and A+
s 
 A+

t . By Lemma 3.2, it follows that As 
 At. Finally, if ap = N , then
A+

s = A+
t , A−

s = A−
t and A0

s 
 A0
t . In fact, Gs has one more vertical arc than

Gt. Thus, every oblique arc in Gs can be obtained by shifting each oblique arc in
Gt one unit to the left-hand side which shows that As 
 At.

Case 2. p = q and there exists i0 such that ai0 = bi0 + 1 and ai = bi for each
i ∈ {1, 2, · · · , q} \ {i0}. We consider the following four subcases:

(i) bi0 − N > 0.
Then A−

s = A−
t , A0

s = A0
t and A+

s 
 A+
t . By Lemma 3.2, we have As 
 At.

(ii) bi0 + 1 − N < 0.
Then A−

s 
 A−
t , A0

s = A0
t and A+

s = A+
t . By Lemma 3.3, we have As 
 At.

(iii) bi0 − N = 0.
Then A−

s = A−
t , A0

s = A0
t \{0} and A+

s \{1} = A+
t . Now, Gt has one more

vertical arc compared with Gs, and Gs has one more down oblique arc com-
pared with Gt. From the procedure of Algorithm 2.1, this difference makes
each up oblique arc in Gs either have the same position as the corresponding
up oblique arc in Gt or is on the right-hand side of the corresponding up
oblique arc in Gt, which in turn implies that each down oblique arc in Gs

either have the same position as the corresponding down oblique arc in Gt or
is on the left-hand side of the corresponding down oblique arc in Gt using
the fact that Gs has one more down oblique arc than Gt. This shows that
As 
 At. By the way, the arc in Gs produced by ai is said to be corresponded
to the arc in Gt produced by bi for i ∈ {1, 2, · · · , q} \ {i0}.

(iv) bi0 + 1 − N = 0.
Then A−

s = A−
t \{−1}, A0

s \{0} = A0
t and A+

s = A+
t . By similar discussion

as in (iii), we can show that As 
 At.
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Now, let us turn to our proof of this lemma. Using the notation at the beginning
of the proof, we know that there exists a series of sets of integers {A′

i}1≤i≤r such
that the relation between any two neighboring sets of As, A

′
1, A

′
2, · · · , A′

r, At falls
into cases 1) or 2) and As 
 A′

1 
 A′
2 
 · · · 
 A′

r 
 At. Thus the desired result
is obtained using the transitive relation of domination.

Lemma 3.5. At t-th iteration of Algorithm 2.1, |A t| ≤ l − 1, where l =
n − 2(k − 1).

Proof. By Lemmas 3.1 to 3.4 and by the induction, we can easily show that
A−1 ≺ A0 ≺ A1 ≺ · · · . If A0 = ∅ then the algorithm stops when t = 1. Thus the
lemma holds, so, without loss of generality, we assume that A0 �= ∅.

Assume the assertion is not true, then there exists an integer t ≥ 1 such that
|At| ≤ l − 1 and |At+1| ≥ l. Suppose At+1 = {b1, b2, · · · , bv}, where v ≥ l. Set
A′

t+1 = {b1, b2, · · · , bl−1} and A′
t+2 = A∪A′

t+1. Construct a bipartite graph G′
t+2

using Steps from 1 to 6 by inputting A′
t+2, we get A′

t+2 = {c1, c2, · · · , cv′}. Since
A′

t+1 
 At, so A′
t+2 
 At+1. Using Lemma 3.4, we know that A′

t+2 
 At+1,
which in turn leads to that A ′

t+2 
 At+1 
 A′
t+1 and v′ ≥ v.

For bipartite graph G′
t+2, since A′

t+2 contains (k − 1) + (l − 1) elements and
A′

t+2 contains v′ elements, the number of saturated vertices in the vertex set {n, n−
1, · · · , k+ l} of G′

t+2 is (k−1)+(l−1)−v′, so the number of unsaturated vertices
in {n, n−1, · · · , k+ l} of G′

t+2 is (n− (k + l)+1)− ((k−1)+(l−1)− v′), i.e.,
v′ − (l − 1), which is a positive number. So, there exists at least one unsaturated
vertex in {n, n − 1, · · · , k + l}. For the leftmost up oblique arc (vi0, uj0), since
each element A′

t+2 is strictly greater than n and vi0 < n, it holds that uj0 > 1.
Hence, the vertex corresponding to 1 is an unsaturated vertex in G′

t+2. Moreover,
since |A′

t+2| = (k− 1)+ (l− 1), there exists (k + l− 1)− ((k− 1) + (l− 1)), i.e.,
1, unsaturated vertex in {1, 2, · · · , k + l− 1}, so 1 is the unique unsaturated vertex
in this set. That is, each vertex in {N −M, N −M + 1, · · · , 0, 1} are unsaturated.

Denote the set composed by the unsaturated vertex in {n, n− 1, · · · , k + l} by
{y1, y2, · · · , yv′−(l−1)}, then

m1 + m2 + · · ·+ mk−1

= (1 + 2 + · · ·+ n)−1−(y1+y2+· · ·+ yv′−(l−1))+(c1+c2 + · · ·+cv′)

−(b1 + b2 + · · ·+ bl−1)

=
(
n+1

2

) − 1− (y1 + · · ·+ yv′−(l−1)) + (c1 − b1) + · · ·+ (cl−1 − bl−1)

+(cl + cl+1 + · · ·+ cv′)

≥ (
n+1

2

) − 1− (y1 + · · ·+ yv′−(l−1)) + (cl + cl+1 + · · ·+ cv′)
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≥ (n+1
2

) − 1 − n(v′ − l + 1) + (n + 1)(v′ − l + 1)

=
(
n+1

2

)
+ v′ − l

>
(
n+1

2

) − mk

= m1 + m2 + · · ·+ mk−1.

Where, the first equality follows from the definition of array W and the graph G′
t+1;

the first inequality follows from Lemma 3.4; the second inequality follows from the
fact that yi ≤ n, for 1 ≤ i ≤ v′ − (l − 1), and ci ≥ n + 1, for l ≤ i ≤ v′; the strict
inequality follows from v′ − l ≥ 0 > −mk . Thus, a contradiction can be derived
and the desired result is obtained.

Lemma 3.6. For each x ∈ At, n ≤ x ≤ M − 2.

Proof. Consider the bipartite graph Gt. By Lemma 3.5, we know that |At| ≤
(k−1)+(l−1). Since {1, 2, · · ·k + l−1} has the size of k + l−1, by Steps from
1 to 6, we know that the starting vertex of the leftmost down oblique arc is not less
than 2 and its ending vertex is not greater than M − 2, this completes the proof.

Now, we are ready to give the proof of our main result.

Proof of Theorem 1.1. As mentioned earlier in Section 2, we only need to
prove the assertion for the case that mk−1 > n and mk < n. By Lemmas 3.4, 3.5
and 3.6, there exists a positive number t0 such that At0 = At0+1 and Step 9 is to
be done. For 1 ≤ i ≤ k − 1, mi corresponds to an arc (ui′ , vj′) or (vj′ , ui′) in
Gt0+1 in the sense that mi = ui′ + vj′ . If vj′ ≤ n, then Si = {ui′ , vj′}. Otherwise,
vj′ corresponds to another arc (ui′′ , vj′′) or (vj′′ , ui′′) in both Gt0 and Gt0+1 in
the sense that v ′

j = ui′′ + vj′′ since vj′ ∈ At0 . Continuing this process until each
summand is not greater than n, then Si can be obtained such that

∑
x∈Si

x = mi.
Since each vertex in the graph has either indegree or outdegree at most 1, we are
able to get k − 1 mutually disjoint subsets of {1, 2, · · · , n}. Finally, letting Sk be
the set of unsaturated vertices in {1, 2, · · · , n}, we obtain the desired partition and
complete the proof.

4. CONCLUDING REMARKS

Theorem 1.1 can be restated in another equivalent form: Let m1, m2, · · · , mk

be positive integers such that mi ≥ n for 1 ≤ i ≤ k and
∑k

i=1 mi ≤
(n+1

2

)
, then

there exist k mutually disjoint subsets S1, S2, · · · , Sk of In such that mi =
∑

x∈Si
x

for 1 ≤ i ≤ k.
Obviously, the result obtained in this paper is more general than that of [5], but

it is still very far from characterizing the n-realizable sequence 〈m1, m2, · · · , mk〉.
Indeed, it is an interesting topic for further research.
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