Open Access
2005 ON THE RECURSIVE SEQUENCE $x_{n+1} = \dfrac{\alpha + \beta x_{n-k}}{f(x_n,...,x_{n-k+1})}$
Stevo Stević
Taiwanese J. Math. 9(4): 583-593 (2005). DOI: 10.11650/twjm/1500407884

Abstract

The boundedness, the oscillatory behavior and the global stability of the nonnegative solutions of the difference equation $$ x_{n+1} = \frac{\alpha + \beta x_{n-k}}{f(x_n,...,x_{n-k+1})}$$ is investigated, where $k \in \mathbf{N},$ the parameters $\alpha$ and $\beta$ are nonnegative real numbers and $f: \mathbf{R}^k_+ \to \mathbf{R}_+$ is a continuous function nondecreasing in each variable such that $f(0,...,0) \gt 0$.

Citation

Download Citation

Stevo Stević. "ON THE RECURSIVE SEQUENCE $x_{n+1} = \dfrac{\alpha + \beta x_{n-k}}{f(x_n,...,x_{n-k+1})}$." Taiwanese J. Math. 9 (4) 583 - 593, 2005. https://doi.org/10.11650/twjm/1500407884

Information

Published: 2005
First available in Project Euclid: 18 July 2017

zbMATH: 1100.39014
MathSciNet: MR2185403
Digital Object Identifier: 10.11650/twjm/1500407884

Subjects:
Primary: 39A10

Keywords: boundedness , converge , difference equation , global stability , ‎oscillation‎ , positive solution

Rights: Copyright © 2005 The Mathematical Society of the Republic of China

Vol.9 • No. 4 • 2005
Back to Top