Open Access
2002 A NOTE ON REDUCIBLE CYCLES IN MULTIPARTITE TOURNAMENTS
Lin-Qiang Pan, Zheng-Ke Miao, Ke-Min Zhang
Taiwanese J. Math. 6(2): 235-239 (2002). DOI: 10.11650/twjm/1500407431

Abstract

[3] proves that if $T$ is a strong $c$-partite tournament $(c\geq 3)$, then there is a $(k-3)$-reducible $k$-cycle in $T$, for all $k=3,4,\cdots, c$. In this paper we investigate the smallest number of $(k-3)$-reducible $k$-cycles in strong $c$-partite tournaments for $3\leq k\leq c$ and give some related problems.

Citation

Download Citation

Lin-Qiang Pan. Zheng-Ke Miao. Ke-Min Zhang. "A NOTE ON REDUCIBLE CYCLES IN MULTIPARTITE TOURNAMENTS." Taiwanese J. Math. 6 (2) 235 - 239, 2002. https://doi.org/10.11650/twjm/1500407431

Information

Published: 2002
First available in Project Euclid: 18 July 2017

zbMATH: 1008.05081
MathSciNet: MR1903138
Digital Object Identifier: 10.11650/twjm/1500407431

Subjects:
Primary: 05C20‎ , 05C38

Keywords: multipartite tournament , pancyclicity , reducible cycle

Rights: Copyright © 2002 The Mathematical Society of the Republic of China

Vol.6 • No. 2 • 2002
Back to Top