Abstract
[3] proves that if $T$ is a strong $c$-partite tournament $(c\geq 3)$, then there is a $(k-3)$-reducible $k$-cycle in $T$, for all $k=3,4,\cdots, c$. In this paper we investigate the smallest number of $(k-3)$-reducible $k$-cycles in strong $c$-partite tournaments for $3\leq k\leq c$ and give some related problems.
Citation
Lin-Qiang Pan. Zheng-Ke Miao. Ke-Min Zhang. "A NOTE ON REDUCIBLE CYCLES IN MULTIPARTITE TOURNAMENTS." Taiwanese J. Math. 6 (2) 235 - 239, 2002. https://doi.org/10.11650/twjm/1500407431
Information