Translator Disclaimer
2001 NORMAL STRUCTURE AND THE ARC LENGTH IN BANACH SPACES
Ji Gao
Taiwanese J. Math. 5(2): 353-366 (2001). DOI: 10.11650/twjm/1500407342

Abstract

Let X be a Banach space, $X_2 \subseteq X$ be a two dimensional subspace of $X$, and $S(X) = \{x \in X, ||x|| = 1\}$ be the unit sphere of $X$. The relationship between the normal structure and the arc length in X is studied. Let $R(X) = \mbox{inf} \{l(S(X_2)) - \gamma(X_22) : X_2 \subseteq X\}$, where $l(S(X_2))$ is the circumference of $S(X_2)$ and $\gamma(X_2) = \mbox{sup}\{2(||x + y|| + ||x - y||) : x; y \in S(X_2)\}$ is the least upper bound of the perimeters of the inscribed parallelogram of $S(X_2)$. The main result is that $R(X) \gt 0$ implies $X$ has the uniform normal structure.

Citation

Download Citation

Ji Gao. "NORMAL STRUCTURE AND THE ARC LENGTH IN BANACH SPACES." Taiwanese J. Math. 5 (2) 353 - 366, 2001. https://doi.org/10.11650/twjm/1500407342

Information

Published: 2001
First available in Project Euclid: 18 July 2017

zbMATH: 0984.46011
MathSciNet: MR1832173
Digital Object Identifier: 10.11650/twjm/1500407342

Rights: Copyright © 2001 The Mathematical Society of the Republic of China

JOURNAL ARTICLE
14 PAGES


SHARE
Vol.5 • No. 2 • 2001
Back to Top