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NORMAL STRUCTURE AND THE ARC LENGTH IN

BANACH SPACES

Ji Gao

Abstract. Let X be a Banach space, X2 ⊆ X be a two dimensional subspace

of X , and S(X) = {x ∈ X, ‖x‖ = 1} be the unit sphere of X . The rela-
tionship between the normal structure and the arc length in X is studied. Let

R(X) = inf{l(S(X2)) − r(X2) : X2 ⊆ X}, where l(S(X2)) is the circum-
ference of S(X2) and r(X2) = sup{2(‖x + y‖ + ‖x − y‖) : x, y ∈ S(X2)}
is the least upper bound of the perimeters of the inscribed parallelogram of

S(X2). The main result is that R(X) > 0 implies X has the uniform normal

structure.

1. INTRODUCTION

In a series of papers, Schäffer made use of the concept of geodesic to study

the unit sphere of a Banach space X (see [13] for the complete references). He

introduced the following two notations: m(X) = inf{δ(x,−x) : x ∈ S(X)}, and
M(X) = sup{δ(x,−x) : x ∈ S(X)} where S(X) is the unit sphere of X and

δ(x,−x) the shortest length of arcs joining antipodal points on S(X). He called
2m(X) the girth, and 2M(X) the perimeter of X. These parameters were used to study

reflexivity and isomorphism of Banach spaces among other things. But besides L1

spaces, C(K) spaces and Hilbert spaces, the values of these parameters are difficult
to obtain.

We introduced a geometric parameter J(X) = sup{‖x+y‖
∧
‖x−y‖} : x, y ∈

S(X)}, a simplification of Schäffer’s girth and perimeter, into a Banach space X

(see [7] for the complete references). We proved that J(X) < 3/2 implies the
uniform normal structure, which, in turn, implies the fixed point property. It is a

well-known result that δ(1) > 0 implies normal structure, where δ(ε) is the modulus
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of convexity. We gave an example of a Banach space X with J(X) < 3/2 and
δ(1) = 0 to show the significance of the parameter J(X). We also computed the
values of J(X) for some classical Banach spaces (see Appendix, §6), and posted
a related question as to whether uniformly nonsquare Banach spaces have the fixed

point property.

In this paper, we introduce another geometric parameter, R(X), into a Banach
space X , and prove that for a Banach space X , R(X) > 0 implies the uniform
normal structure. We then give in §4 an example of a Banach space X with

R(X) > 0 and J(X) > 3/2. Significantly, this means that the parameter R(X) is
really distinct from J(X). However, whether uniformly nonsquare Banach spaces
have the fixed point property is still an open question.

2. PRELIMINARIES

Let X be a normed linear space, and let S(X) = {x ∈ X : ‖x‖ = 1} be the
unit sphere of X.

2-1. Curves in Banach Spaces

A continuous mapping x(t) from a closed interval [a, b] to a Banach space X
is called a curve in X : C = x(t), a ≤ t ≤ b. A curve is called simple if it does

not have multiple points. A curve is called closed if x(a) = x(b). A closed curve
is called symmetric about the origin if x ∈ C, then also −x ∈ C.

The concept of the length of a curve in Banach spaces resembles the same

concept in Euclidean spaces. For curve C = x(t), let P stand for a partition
a = t0 < t1 < t2 < ... < ti < ... < tn = b of interval [a, b] and l(C, P ) =∑n

i=1 ‖x(ti) − x(ti−1)‖, where xi(t), i = 0, 1, 2, ..., n are called partition points
on C. Then the length l(C) of curve C = x(t), a ≤ t ≤ b, is defined as the least

upper bound of l(C, P ) for all possible partitions P of [a, b]:

l(C) = supP {l(C, P )}.

If l(C) is finite, the curve is called rectifiable.

Let ‖P‖ = max1≤i≤n{|ti − ti−1|} for a partition P of [a, b].

Theorem 1 [2, 13]. If curve C is rectifiable, then for all ε > 0, there exists

δ > 0 such that ‖P‖ < δ implies l(C) − l(C, P ) < ε. Furthermore, if {Pk} is a
sequence of partitions of [a, b] with ‖Pk‖ → 0, then limk→∞ l(C, Pk) = l(C).

Let lta(C) denote the length of curve C = x(t) from a to t. For a rectifiable

curve C = x(t), a ≤ t ≤ b, the arc length lta(C) is a continuous function of t.
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Definition 1 [2, 13]. Let y(s) represent the point x(t) on the curve C for

which lta(C) = s. Then C = y(s), 0 ≤ s ≤ l(C), is called the standard form of
the rectifiable curve C.

For a normed linear space X , we use X2 to denote a two-dimensional subspace

of X. Then S(X2) is a simple closed curve which is symmetric about the origin and
unique up to orientation.

Theorem 2 [2, 13]. LetX2 be a two-dimensional Banach space, andK1, K2 be

closed convex subsets of X2 with nonvoid interiors. If K1 ⊆ K2, then l(∂(K1)) ≤
l(∂(K2)), where l(∂(Ki)) denotes the length of the circumference of Ki, i = 1, 2.

Theorem 3 [13]. l(S(X2)) ≤ 8; l(S(X2)) = 8 if and only if S(X2) is a
parallelogram.

Theorem 4 [13]. l(S(X2)) ≥ 6; l(S(X2)) = 6 if and only if S(X2) is an
affinely regular hexagon.

2-2. Normal Structure in Banach Spaces

In 1948, Brodskii and Milman [1] introduced the following geometric concepts:

Definition 2. A bounded, convex subset K of a Banach space X is said to

have normal structure if every convex subset H of K that contains more than one

point contains a point x0 ∈ H such that sup{‖x0 − y‖, y ∈ H} < d(H), where
d(H) = sup{‖x − y‖, x, y ∈ H} denotes the diameter of H . A Banach space X

is said to have normal structure if every bounded, convex subset of X has normal

structure. A Banach space X is said to have weak normal structure if for each

weakly compact convex set K in X that contains more than one point has normal

structure. X is said to have uniform normal structure if there exists c, 0 < c < 1,
such that for any subset K as above, there exists x0 ∈ K such that sup{‖x0 − y‖,
y ∈ K} < c · (d(K)).

For a reflexive Banach space X, the normal structure and weak normal structure

coincide.

In 1964, Kirk [10] proved that if a weakly compact subset K of X has normal

structure then any nonexpansive mapping on K has a fixed point. Since then much

attention has been focused on normal structure. Whether or not a Banach space has

normal structure depends on the geometry of the unit sphere. We refer the interested

reader to [4, 5, 6, 7, 8, 11, 15, 16].
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Lemma 1 [5]. Let X be a Banach space without weak normal structure. Then

for any ε, 0 < ε < 1, there exists a sequence {zn} ⊆ S(X) with zn →w 0, and

1− ε < ‖zn+1 − z‖ < 1 + ε

for sufficiently large n and any z ∈ co{zk}n
k=1.

Lemma 2 [7]. Let X be a Banach space without weak normal structure. Then

for any ε, 0 < ε < 1, there exist x1, x2, x3 in S(X) satisfying

( i ) x2 − x3 = ax1 with |a− 1| < ε,

( ii ) |‖x1 − x2‖ − 1|, |‖x3 − (−x1)‖ − 1| < ε, and

(iii) ‖(x1 + x2)/2‖, ‖(x3 − x1)/2‖ > 1 − ε.

The geometric meaning of the lemma can be succinctly described as follows: if

X does not have weak normal structure, then there exists an inscribed hexagon in

S(X) with length of each side arbitrarily closed to 1 (by (i) and (ii)), and with at
least four sides whose distance to S(X) are arbitrarily small (by (iii)).

3. PARAMETER R(X) AND NORMAL STRUCTURE

For a Banach space X , let B(X) = {x ∈ X : ‖x‖ ≤ 1} be the ball of X ,
B0(X) = B(X) \ S(X) be the interior of B(X). If K ⊆ X , let co(K) be the
convex hull of subset K of X .

If x, y ∈ S(X2), then 2(‖x + y‖ + ‖x − y‖) is the perimeter of inscribed
parallelogram with vertices x, y,−x, and −y of S(X2).

Let r(X2) = sup{2(‖x + y‖ + ‖x − y‖) : x, y ∈ S(X2)}. Then r(X2) ≤
l(S(X2)) by Theorem 2.

Definition 3. For a Banach space X , define R(X) = inf{l(S(X2))− r(X2) :
X2 ⊆ X}.

For a Hilbert space H , R(H) = 2π − 4
√

2.

Theorem 5. If X is a Banach space with R(X) > 0, then X is uniformly

nonsquare.

Proof. Suppose X is not uniformly nonsquare. For any ε > 0, there exist
x, y ∈ S(X) such that both ‖x+y‖ and ‖x−y‖ > 2−(ε/4) [9]. letX2 be the two-

dimensional space spanned by x and y. Then r(X2) ≥ 2(‖x+y‖+‖x−y‖) > 8−ε,
and hence R(X) = inf{l(S(X2)) − r(X2) : X2 ⊆ X} < ε. Since ε can be

arbitrarily small, we have R(X) = 0.
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Lemma 3 [7]. Let x, y ∈ B(X) and 0 < ε < 1 such that ‖x + y‖/2 > 1 − ε.

Then for any c, 0 ≤ c ≤ 1, and z = cx + (1 − c)y ∈ co({x, y}), the line segment
connecting x and y, we have ‖z‖ > 1 − 2ε.

Theorem 6. If X is a Banach space with R(X) > 0, then X has normal

structure.

Proof. R(X) > 0 implies that X is uniformly nonsquare, and hence reflexive
[9]. Normal structure and weak normal structure coincide.

Suppose X dose not have weak normal structure. For ε > 0, let x1, x2 and x3

in S(X) satisfy the conditions in Lemma 2. Let X2 be the two-dimensional space

spanned by x1 and x2 (see the Figure below).

Then there exists an x ∈ X and a real number α such that x−x2 = α(x2−x1)
and x− x3 = α(x3 + x1). Let y2 ∈ the line segment co({x, x2}) and y3 ∈ the line
segment co({x, x3}), and β be the real number such that y2−x2 = β(x2−x1), y3−
x3 = β(x3+x1), co({y2, y3})

⋂
S(X) 6= Ø, and co({y2, y3}) ⊆ X2\B0(X2). Then

y2 − y3 = δ(x2 − x3), where 0 < δ < 1. Furthermore, we can take ε small enough
such that β < (1 + ε)/(1− ε) < 2. Then

Figure



358 Ji Gao

‖y2 − x2‖ = β‖x2 − x1‖ ≤ β(1 + ε) ≤ β + 2ε,

‖y3 − x3‖ = β‖x3 + x1‖ ≤ β(1 + ε) ≤ β + 2ε,

‖x2 − x1‖
‖x − x2‖

=
2 − ‖x2 − x3‖
‖x2 − x3‖

≥ 1 − ε

1 + ε
≥ 1− 2ε,

δ =
‖y2 − y3‖
‖x2 − x3‖

=
‖x− y2‖
‖x − x2‖

= 1 − ‖y2 − x2‖
‖x − x2‖

= 1 − ‖y2 − x2‖
‖x2 − x1‖

· ‖x2 − x1‖
‖x − x2‖

≤ 1 − β(1− 2ε) ≤ 1 − β + 4ε,

and

‖y2 − y3‖ = δ‖x2 − x3‖ ≤ (1 − β + 4ε)(1 + ε) ≤ 1− β + 4ε + 2ε = 1 − β + 6ε.

Therefore, the length of the curve from x2 to x3 on S(X2) is less than or equal
to 2(β + 2ε) + 1 − β + 6ε = 1 + β + 10ε.

Since ‖x1 + x2‖/2 > 1 − ε, for any z ∈ co({x1, x2}), we have ‖z‖ > 1 − 2ε.

So, the line segment co({x1/(1 − 2ε), x2/(1 − 2ε)}) ⊆ X2\B0(X2), and hence
the length of the curve from x1 to x2 on S(X2) ≤ the sum of the lengths of

the line segments co({x1, x1/(1− 2ε)}), and co({x1/(1− 2ε), x2/(1− 2ε)}), and
co({x2/(1 − 2ε), x2}) ≤ 2/(1− 2ε) − 2 + (1 + ε)/(1− 2ε) ≤ 1 + 8ε.

Similarly, the length of the curve from x3 to −x1 on S(X2) is less than or equal
to 1 + 8ε.

Therefore, l(S(X2)) = 2 (length of the curve from x1 to x2 on S(X2) + length
of the curve from x2 to x3 on S(X2) + length of the curve from x3 to −x1 on

S(X2) ≤ 2(2(1+ 8ε) + 1 + β + 10ε) = 2(3 + β + 26ε) = 6 + 2β + 52ε. We have

l(S(X2)) ≤ 6 + 2β + 52ε.(3.1)

On the other hand, let y ∈ co({y2, y3}) ∩ S(X2). There must exist an z
′
1 ∈

co({x2, x}) and z1 ∈ co({x1, x}) such that y ∈ co({−x1, z
′
1}), and ‖z′

1 + x1‖ =
2‖z1‖. If z1 ∈ co({x1, x2}), then ‖z1‖ ≥ 1− 2ε, and hence ‖z′

1 + x1‖ = 2‖z1‖ ≥
2(2− 2ε) = 2− 4ε. Since ‖z′

1 − y‖/‖z1‖ = ‖y− y2‖/‖x1‖, ‖z
′
1− y‖ = ‖z1‖(‖y−

y2‖) ≤ ‖y − y2‖, and ‖y + x1‖ = ‖z′
1 + x1‖ − ‖z′

1 − y‖ ≥ 2 − 4ε − ‖y − y2‖. If
z1 ∈ co({x2, x}), then ‖z

′
1 + x1‖ = 2‖z1‖ ≥ 2. We need the following fact.

Fact: Suppose u = x2 + t(x2 − x1), u1 = x2 + t1(x2 − x1), t1 ≥ 0, and
‖u1 + x1‖ ≥ 2. Then ‖u + x1‖ is an increasing function of t on [t1,∞).

Proof of the fact: Let U(x, a) = {y ∈ X : ‖y − x‖ ≤ a} and S(x, a) = {y ∈
X : ‖y − x‖ = a} be the unit ball and the unit sphere of X with center at x and
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radius a, respectively. Since ‖x2−(−x1)‖ ≤ 2, there exists v1 ∈ co({x2, u1}) such
that v1 ∈ S(−x1, 2).

If ‖u+x1‖ is not an increasing function, let t1 ≤ t2 ≤ t3 such that ‖u2+x1‖ =
b > ‖u3 + x1‖, where u2 = x2 + t2(x2 − x1), and u3 = x2 + t3(x2 − x1). Since
v1 ∈ co({x2, u1}) ⊆ co({x2, u2}), b ≥ 2 by the convexity of U(−x1, 2).

Consider v2 = 2(u2 + x1)/b − x1, and v3 = 2(u3 + x1)/b − x1. Then v2 ∈
S(−x1, 2), and v3 ∈ U(−x1, 2) \ S(−x1, 2). Since u2 = cv1 + (1 − c)u3, where

0 ≤ c ≤ 1, we have u2 + x1 = c(v1 + x1) + (1 − c)(u3 + x1), ‖u2 + x1‖ ≤
c‖v1 + x1‖+ (1 − c)(‖u3 + x1‖), and b‖v2 + x1‖/2 ≤ 2c + b(1− c)‖v3 + x1‖/2.
Therefore ‖v2+x1‖ < 2(2c+(1−c)b)/b≤ 2. This contradicts with v2 ∈ S(−x1, 2).

From the previous fact we have ‖z′
1+x1‖ ≤ ‖x+x1‖ ≤ 2(1+ε)/(1−ε) ≤ 2+6ε.

Hence ‖z1‖ ≤ 1 + 3ε, and ‖z′
1 − y‖ = ‖z1‖(‖y − y2‖) ≤ (1 + 3ε)(‖y − y2‖). So,

‖y + x1‖ = ‖z′
1 + x1‖ − ‖z′

1 − y‖ ≥ 2 − (1 + 3ε)‖y − y2‖ ≥ 2 − 4ε − ‖y − y2‖.
Finally, we proved ‖y + x1‖ ≥ 2− 4ε − ‖y − y2‖.

Similarly, ‖y − x1‖ ≥ 2 − 4ε − ‖y − y3‖.

So, ‖y+x1‖+‖y−x1‖ ≥ 4−8ε−(‖y−y2‖+‖y−y3‖) = 4−8ε−‖y2−y3‖ ≥
4 − 8ε − (1 − β + 6ε) = 3 + β − 14ε, and hence

r(X2) = sup{2(‖x + y‖ + ‖x − y‖) : x, y ∈ S(X2)} ≥ 6 + 2β − 28ε.(3.2)

From (3.1) and (3.2), we have R(X) = inf{l(S(X2)) − r(X2) : X2 ⊆ X} < 80ε.

Since ε can be arbitrarily small, we have R(X) = 0.

4. R(X) AND OTHER PARAMETERS

Let δ(ε) = inf{1 − (‖x + y‖/2) : ‖x − y‖ ≥ ε, x, y ∈ S(X)}, 0 ≤ ε ≤ 2, be
the modulus of convexity of X . Since inf{1 − (‖x + y‖)/2 : ‖x − y‖ ≥ ε, x, y ∈
S(X)} = inf{1 − (‖x + y‖)/2 : ‖x − y‖ = ε, x, y ∈ S(X)}, 0 ≤ ε ≤ 2, we have
δ(‖x − y‖) ≤ 1 − (‖x + y‖)/2, for any x, y ∈ S(X).

Let l(X) = inf{l(S(X2)) : X2 ⊆ X}. Then 6 ≤ l(X) ≤ 8.

Lemma 4. For a Banach space X, δ(2−) > 0, where δ(2−) = limε→2 δ(ε),
implies that X is uniformly nonsquare.

Proof. If X is not uniformly nonsquare, let x, y ∈ S(X) be as in Theorem 5.
Then δ(2− (ε/4) ≤ 1 − (2 − (ε/4))/2 = ε/8. Letting ε → 0, we have δ(2−) = 0.
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Theorem 7. For a Banach space X, δ(l(X)/4) > 2− (l(X)/4 implies X has

normal structure.

Proof. δ(l(X)/4) > 2 − (l(X)/4) implies δ(2−) > 0, so X is uniformly

nonsquare. Hence X is reflexive, therefore weak normal structure and normal

structure coincide.

If X fails to have normal structure, for any ε > 0, let x1, x2, x3 and y be in

Theorem 6. Then 1−ε ≤ ‖y−x1‖ ≤ 2, 1−ε ≤ ‖y+x1‖ ≤ 2, and l(X)/2−80ε ≤
‖y − x1‖ + ‖y + x1‖, from Theorem 6. So, l(X)/2− 2 − 80ε ≤ min{‖y − x1‖,
‖y + x1‖}, and max{‖y − x1‖, ‖y + x1‖} ≥ l(X)/4 − 40ε. Recall that δ(ε)
is an increasing function on [0, 2]. Thus δ(l(X)/4 − 40ε) ≤ δ(max{‖y − x1‖,
‖y + x1‖}) ≤ 1 − min{‖y − x1‖, ‖y + x1‖}/2 ≤ 2 − l(X)/4 + 40ε. By letting
ε → 0, we have δ(l(X)/4)≤ 2 − l(X)/4.

Therefore, δ(l(X)/4) > 2 − l(X)/4 implies normal structure.

Corollary 1. For a Banach space X with l(X) ≥ 7, the condition δ(7/4) >
1/4 implies X has normal structure.

Proof. The conditions l(X)/4 ≥ 7/4, 2 − l(X)/4 ≤ 1/4, δ(7/4) > 1/4, and
δ(ε) is an increasing function on [0, 2] imply that δ(l(X)/4) > 2 − l(X)/4. So,
X has normal structure from Theorem 7.

Since δ(3/2) > 1/4 implies δ(7/4) > 1/4, Corollary 1 improved the result of
Corollary 5.6 for the space X with l(X) ≥ 7 [7].

Corollary 2. For a Banach space X, if there exists an ε, such that 0 ≤ ε ≤
l(X)/4 and δ(ε) > ((8 − l(X))/l(X))ε, then X has normal structure.

Proof. δ(ε)/ε is an increasing function on [0, 2] by [12]. δ(ε)/ε > (8 −
l(X))/l(X)(0 ≤ ε ≤ l(X)/4) implies δ(l(X)/4)/(l(X)/4) ≥ δ(ε)/ε > (8 −
l(X))/l(X), that is, δ(l(X)/4) > 2− l(X)/4.

Theorem 8. For a Banach space X, δ(2−) > 1/2 implies X has normal

structure.

Proof. If X fails to have normal structure, let x1, x2, x3 be in Lemma 2. Then

2−4ε ≤ ‖x3−x1‖ ≤ 2, 1−ε ≤ ‖x3+x1‖ ≤ 1+ε, and δ(2−4ε) ≤ δ(‖x3−x1‖) ≤
1 − (‖x3 + x1‖/2) ≤ (1 + ε)/2. By letting ε → 0, we have δ(2−) ≤ 1/2.

Corollary 3. For a Banach space X, the condition δ(ε) > ε/4 implies X has

normal structure.

Proof. Since δ(ε)/ε is an increasing function on [0, 2], from δ(2−)/2 ≥
δ(ε)/ε > 1/4, we have δ(2−) > 1/2.

Let r(X) = sup{r(X2) : X2 ⊆ X} = sup{2(‖x + y‖ + ‖x − y‖) : x, y ∈
S(X)}.
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Proposition 1. If X is a Banach space, either lp or Lp[0, 1], then r(X) =
22+(1/p), 1 < p ≤ 2; r(X) = 22+(1/q), p > 2, where (1/p) + (1/q) = 1.

Proof. By using Lagrange multipliers in basic calculus, the function u+v, under

the constraint up+vp = a, assumes its maximum 2(p−1)/p·a1/p at u = v = (a/2)1/p.

If 1 < p ≤ 2, Clarkson inequality [3, 4]: ‖x+y‖p+‖x−y‖p ≤ 2(‖x‖p+‖y‖p),
for all x, y ∈ S(X), implies that ‖x + y‖ + ‖x − y‖ ≤ 2(p−1)/p · 22/p = 2(p+1)/p.

If p > 2, Clarkson inequality ‖x + y‖p + ‖x − y‖p ≤ 2p−1(‖x‖p + ‖y‖p), for
all x, y ∈ S(X), implies ‖x + y‖ + ‖x − y‖ ≤ 2(p−1)/p · (2p)1/p = 2(2p−1)/p.

For lp, 1 < p ≤ 2, let x = (1, 0, 0, ..., 0, ...) and y = (0, 1, 0, ..., 0, ...). Then
‖x + y‖+ ‖x − y‖ = 2(p+1)/p.

For Lp [0, 1], 1 < p ≤ 2, let

x(t) =

{
2

1
p , 0 ≤ t < 1

2 ,

0, 1
2 ≤ t ≤ 1,

and

y(t) =

{
0, 0 ≤ t < 1

2 ,

21/p, 1
2 ≤ t ≤ 1.

Then

‖x(t) + y(t)‖+ ‖x(t)− y(t)‖ = p

√∫ 1

0
(2

1
p )p dt + p

√∫ 1

0
(2

1
p )p dt = 2 · 2

1
p = 2

p+1
p .

We have r(X) = sup{2(‖x + y‖ + ‖x − y‖) : x, y ∈ S(X)} = 2(1/p)+2,

1 < p ≤ 2.
For lp, p > 2, let x = (2−1/p, 2−1/p, 0, ..., 0, ...), y = (2−1/p, −2−1/p, 0, ..., 0, ...).

Then ‖x + y‖ + ‖x − y‖ = 2(2(p−1)/p) = 2(p+1)/p.

For Lp [0, 1], p > 2, let

x(t) =

{
1, 0 ≤ t < 1

2 ,

1, 1
2 ≤ t ≤ 1,

and

y(t) =

{
−1, 0 ≤ t < 1

2 ,

1, 1
2 ≤ t ≤ 1.

Then

‖x(t) + y(t)‖+ ‖x(t)− y(t)‖ = p

√∫ 1

1
2

2p dt +
p

√∫ 1
2

0
2p dt = 2(2

p−1
p ) = 2

2p−1
p .
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We have r(X) = sup{2(‖x + y‖ + ‖x − y‖) : x, y ∈ S(X)} = 23−(1/p) =
22+(1/q), p > 2.

Theorem 9. For a Banach space X, r(X) < l(X) implies X has normal

structure.

Proof. R(X) = inf{l(S(X2)) − r(X2) : X2 ⊆ X} ≥ inf{l(S(X2)) : X2 ⊆
X} − sup{r(X2) : X2 ⊆ X} = l(X) − r(X). r(X) < l(X) implies R(X) =
l(X)− r(X) > 0, which hence implies X has normal structure by Theorem 6.

Corollary 4. For a Banach space X, r(X) < 6 implies that X has normal

structure.

Finally, at the end of this section we show that the two parameters are distinct

by giving an example of a Banach space X with R(X) > 0 and J(X) > 3/2.
Consider an n-dimensional space lnp , where 1 ≤ p ≤ ∞, and n is a positive

integer. The norm is defined by

‖(x1, x2, ..., xn)‖p =

{
(Σn

j=1|xj |p)
1
p , if 1 ≤ p < ∞,

max{|x1|, |x2|, ..., |xn|}, if p = ∞.

This is a subspace of general lp space, where 1 ≤ p ≤ ∞. The norm is defined
by

‖(x1, x2, ..., xn, ...)‖p =

{
(Σ∞

j=1(|xj |p)
1
p , if 1 ≤ p < ∞,

sup{|x1|, |x2|, ..., |xn|, ...}, if p = ∞.

From [7],

J(lp) =

{
21− 1

p , if 2 ≤ p < ∞

2, if p = ∞.

It is easy to show J(lnp ) = J(lp) for all n.

Let n = 2, and p > (log2(4/3))−1. Then J(l2p) = 21−(1/p) > 2 · 3/4 = 3/2.

On the other hand, S(l2p) is a compact set in R2, so there exist x and y ∈ S(l2p)
such that the supremum is assummed at x and y in the definition of J(l2p). So,
J(l2p) = ‖x + y‖ = ‖x − y‖, and r(l2p) = 2(‖x + y‖ + ‖x − y‖) = 4‖x + y‖.

But l2p is a two-dimensional uniform convex space, so l(S(l2p)) > 4‖x + y‖ by
the definition of arc length. We have R(l2p) > 0.

We may also use an lnp space for any n or the lp space to establish our purpose,
but for the lp space it is more complicated.
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5. THE ARC LENGTHS AND UNIFORM NORMAL STRUCTURE

Let F be a filter on an index set I , and let {xi}i∈I be a subset in a Hausdorff

topological space X . {xi}i∈I is said to converge to x with respect to F , denoted

by limF xi = x, if for each neighborhood U of x, {i ∈ I : xi ∈ U} ∈ F . A filter
U on I is called an ultrafilter if it is maximal with respect to the ordering of the

set inclusion. An ultrafilter is called trivial if it is of the form {A : A ⊆ I, i0 ∈ A}
for some i0 ∈ I . We will use the fact that if U is an ultrafilter, then (i): for any

A ⊆ I , either A ⊆ U or I \ A ⊆ U ; (ii): if {xi}i∈I has a cluster point x, then

limU xi exists and equals x.
Let {Xi}i∈I be a family of Banach spaces and let l∞(I, Xi) denote the subspace

of the product space equipped with the norm ‖(xi)‖ = supi∈I ‖xi‖ < ∞.

Definition 4 [14]. LetU be an ultrafilter on I and letNU = {(xi) ∈ l∞(I, Xi) :
limU ||xi|| = 0}.

The ultraproduct of {Xi}i∈I is the quotient space l∞(I, Xi)/NU equipped with

the quotient norm.

We will use (xi)U to denote the element of the ultraproduct. It follows from

remark (ii) above and the definition of quotient norm that

‖(xi)U‖ = lim U ||xi‖.(5.1)

In the following we will restrict our index set I to be N, the set of natural
numbers, and let Xi = X, i ∈ N, for some Banach space X . For an ultrafilter U

on N, we use XU to denote the ultraproduct.

Theorem 10. For any Banach space X, and for any nontrivial ultrafilter U
on N, R(XU) = R(X).

Proof. For any ε > 0, from the definition of R(X), there exists a two-
dimensional subspace X2 ⊆ X and x, y ∈ S(X2) such that for all partitions P
of the interval [0, l(S(X2))] and the corresponding l(S(X2), P ),

l(S(X2), P )− 2(‖x + y‖ + ‖x − y‖) < R(X) + ε.

Let xi = x, and yi = y, for all i ∈ N. Then (xi)U , (yi)U ∈ S((XU)2),
where (XU)2 is a two dimensional subspace, spanned by (xi)U , and (yi)U , of

XU . The projection from XU to X produces a one-to-one correspondence between

the partitions PU of [0, l(S((XU)2))] and the partition P of [0, l(S(X2))], and
l(S((XU)2), PU) = l(S(X2), P ).

Hence l(S((XU)2), PU)−2(‖(xi)U+(yi)U‖+‖(xi)U−(yi)U‖) = l(S(X2), P )−
2(‖x + y‖ + ‖x − y‖) < R(X) + ε.

Since ε can be arbitrarily small, we have proved R(XU) ≤ R(X).
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To prove the reverse inequality, we choose (XU)2 ⊆ XU , (xi)U , (yi)U ∈
S((XU)2), and a partition PU of [0, l(S((XU)2))] such that l(S((XU)2), PU) >
l(S((XU)2))− ε and l(S((XU)2), PU)− 2(‖(xi)U + (yi)U‖+ ‖(xi)U − (yi)U‖) <

R(XU) + ε.
Without loss of generality, we may assume that ‖xi‖, ‖yi‖ = 1 for all i ∈ N,

and the norm of each component of the partition on S((XU)2) has norm 1 too.
From Theorem 1 and (5.1), l(S((XU)2)) = supPU

{l(S((XU)2), PU)}
= supPU

{limU{l(S(X i
2), (PU)i)}} = limU{supPU

{l(S(X i
2), (PU)i)}}

= limU{l(S(X i
2))}, where X i

2 is a two-dimensional subspace spanned by xi, and

yi, and (PU)i, a projection of the partition PU to X i
2, is a partition of S(X i

2) for
all i ∈ N.

From remarks (i) and (ii) of ultrafilter and by (5.1) and the paragragh above,

the sets

J = {i ∈ N, l(S((XU)2), PU)−2(‖(xi)U +(yi)U‖+‖(xi)U−(yi)U‖)<R(XU)+ε},
K = {i ∈ N, l(S((XU)2), PU) > l(S((XU)2)) − ε}, and
M = {i ∈ N, l(S(Xi

2)) < l(S((XU)2)) + ε}
are all in U . So the intersection J

⋂
K

⋂
M is in U too, and is hence not empty.

Let i ∈ J
⋂

K
⋂

M . We have l(S(X i
2), (PU)i) − 2(‖xi + yi‖ + ‖xi − yi‖) <

R(XU)+ε, l(S(X i
2), (PU)i) > l(S((XU)2))−ε, and l(S(X i

2)) < l(S((XU)2))+ε.
So, l(S(X i

2)) − 2(‖xi + yi‖ + ‖xi − yi‖) < R(XU) + 3ε. Hence R(X) <

R(XU) + 3ε. Since ε can be arbitrarily small, R(X) ≤ R(XU).

Similarly, we can prove the following two theorems:

Theorem 11. For any Banach space X, and for any nontrivial ultrufilter U
on N, r(XU) = r(X).

Theorem 12. For any Banach space X, and for any nontrivial ultrufilter U
on N, l(XU) = l(X).

Theorem 13. If X is a Banach space with R(X) > 0, then X has uniform

normal structure.

Proof. The idea of the proof is the same as the proof of Theorem 4.4 in [7].

Suppose that R(X) > 0, and that X does not have uniform normal structure. We

find a sequence {Cn} of bounded closed convex subsets of X such that for each n,

0 ∈ Cn, d(Cn) = 1, and
rad(Cn) = inf{sup{‖x − y‖, y ∈ Cn}, x ∈ Cn} > 1 − 1

n .

Let U be any nontrivial ultrafilter on N, and let

C = {(xn)U : xn ∈ Cn, n ∈ N}.
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Then C is a nonempty bounded closed convex subset of XU . It follows from the

above properties of Cn that d(C) = rad(C) = 1, so XU does not have normal

structure. On the other hand, from Theorem 10, R(XU) = R(X) > 0. This
contradicts Theorem 6, and hence X must have uniform normal structure.

Similarly, we can prove the following theorem:

Theorem 14. For a Banach space X, δ(l(X)/4) > 2− (l(X)/4) implies that
X has uniform normal structure.

Ttheorem 15. For a Banach space X, r(X) < l(X) implies that X has

uniform normal structure.

Theorem 16. For a Banach space X, r(X) < 6 implies that X has uniform

normal structure.

6. APPENDIX

In this section, I summarize some results about the parameters δ(ε), r(X) and
J(X) for some classical Banach spaces.

Theorem 17 [7]. Let X be either lp or Lp [0, 1], where 1 ≤ p ≤ ∞. Then
J(X) = 21/p, if 1 < p ≤ 2; J(X) = 21−(1/p), if 2 < p < ∞; and J(X) = 2, if
p = 1 or ∞.

Theorem 18 [4, p. 148]. Let X be either lp or Lp [0, 1], where 1 < p < ∞.
Then, δ(ε) satisfies the equation: (1− δ(ε) + (ε/2))p + (1− δ(ε)− (ε/2))p = 2, if
1 < p ≤ 2; δ(ε) = 1 − (1 − (ε/2)p)1/p, if 2 < p < ∞.

Theorem 19. For the spaces l1, l∞, L1 [0, 1] and L∞ [0, 1], we have δ(ε) ≡ 0.

Proof. From [7], for any Banach space X , J(X) < ε if and only if δ(ε) >
1 − (ε/2). So, it is a direct result of Theorem 17.

The values of r(X) are shown in Proposition 1.
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