Translator Disclaimer
June, 2020 Backward Stability and Divided Invariance of an Attractor for the Delayed Navier-Stokes Equation
Yangrong Li, Qiangheng Zhang
Taiwanese J. Math. 24(3): 575-601 (June, 2020). DOI: 10.11650/tjm/190603

Abstract

We study backward stability of a pullback attractor especially for a delay equation. We introduce a new concept of a backward attractor, which is defined by a compact, pullback attracting and dividedly invariant family. We then show the equivalence between existence of a backward attractor and backward stability of the pullback attractor, and present some criteria by using the backward limit-set compactness of the system. In the application part, we consider the Navier-Stokes equation with a nonuniform Lipschitz delay term and a backward tempered force. Based on the fact that the delay does not change the backward bounds of the velocity field and external forces, we establish the backward-uniform estimates and obtain a backward attractor, which leads to backward stability of the pullback attractor. Some special cases of variable delay and distributed delay are discussed.

Citation

Download Citation

Yangrong Li. Qiangheng Zhang. "Backward Stability and Divided Invariance of an Attractor for the Delayed Navier-Stokes Equation." Taiwanese J. Math. 24 (3) 575 - 601, June, 2020. https://doi.org/10.11650/tjm/190603

Information

Received: 26 March 2019; Revised: 4 June 2019; Accepted: 17 June 2019; Published: June, 2020
First available in Project Euclid: 19 May 2020

zbMATH: 07251188
MathSciNet: MR4100710
Digital Object Identifier: 10.11650/tjm/190603

Subjects:
Primary: 35B41, 37L30

Rights: Copyright © 2020 The Mathematical Society of the Republic of China

JOURNAL ARTICLE
27 PAGES


SHARE
Vol.24 • No. 3 • June, 2020
Back to Top