Translator Disclaimer
February, 2020 Intrinsic Square Function Characterizations of Variable Weak Hardy Spaces
Xianjie Yan
Taiwanese J. Math. 24(1): 43-62 (February, 2020). DOI: 10.11650/tjm/190401

Abstract

Let $p(\cdot) \colon \mathbb{R}^n \to (0,\infty)$ be a variable exponent function satisfying the globally log-Hölder continuous condition. In this article, via using the atomic and Littlewood-Paley function characterizations of variable weak Hardy space $W\!H^{p(\cdot)}(\mathbb{R}^n)$, the author establishes its intrinsic square function characterizations including the intrinsic Littlewood-Paley $g$-function, the intrinsic Lusin area function and the intrinsic $g_{\lambda}^{\ast}$-function.

Citation

Download Citation

Xianjie Yan. "Intrinsic Square Function Characterizations of Variable Weak Hardy Spaces." Taiwanese J. Math. 24 (1) 43 - 62, February, 2020. https://doi.org/10.11650/tjm/190401

Information

Received: 5 September 2018; Accepted: 12 March 2019; Published: February, 2020
First available in Project Euclid: 15 April 2019

zbMATH: 07175539
MathSciNet: MR4053837
Digital Object Identifier: 10.11650/tjm/190401

Subjects:
Primary: 42B25
Secondary: 42B30, 42B35, 46E30

Rights: Copyright © 2020 The Mathematical Society of the Republic of China

JOURNAL ARTICLE
20 PAGES


SHARE
Vol.24 • No. 1 • February, 2020
Back to Top