
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 24, No. 1, pp. 43–62, February 2020

DOI: 10.11650/tjm/190401

Intrinsic Square Function Characterizations of Variable Weak Hardy Spaces

Xianjie Yan

Abstract. Let p(·) : Rn → (0,∞) be a variable exponent function satisfying the

globally log-Hölder continuous condition. In this article, via using the atomic and

Littlewood-Paley function characterizations of variable weak Hardy spaceWHp(·)(Rn),

the author establishes its intrinsic square function characterizations including the in-

trinsic Littlewood-Paley g-function, the intrinsic Lusin area function and the intrinsic

g∗λ-function.

1. Introduction

Based on the variable Lebesgue space, theories of several variable function spaces have

been rapidly developed in recent years (see, for example, [3, 4, 10, 12, 24, 26, 37, 38, 40, 43,

44]). Recall that the variable Lebesgue space Lp(·)(Rn), with a variable exponent function

p(·) : Rn → (0,∞), is a generalization of the classical Lebesgue space Lp(Rn), via replacing

the constant exponent p by the exponent function p(·), which consists of all functions f

such that
∫
Rn |f(x)|p(x) dx < ∞. The study of variable Lebesgue spaces can be traced

back to Birnbaum-Orlicz [7] and Orlicz [27], however, they have been the subject of more

intensive study since the early 1990s because of their intrinsic interest for applications into

harmonic analysis, partial differential equations and variational integrals with nonstandard

growth conditions (see [8, 11,19,41] and their references).

Particularly, Nakai and Sawano [26] first introduced the variable Hardy spacesHp(·)(Rn)

with p(·) satisfying the globally log-Hölder continuous condition, and established their

atomic characterizations which were further applied to consider their duals and the bound-

edness of singular integral operators on Hp(·)(Rn). Later, Sawano [29] extended the atomic

characterization of Hp(·)(Rn), which also improves the corresponding result in [26], and

gave out more applications including the boundedness of several operators. Independently,

Cruz-Uribe and Wang [10] also investigated the variable Hardy space Hp(·)(Rn) with p(·)
satisfying some conditions slightly weaker than those used in [26]. In [10], equivalent

characterizations of Hp(·)(Rn) by means of radial or non-tangential maximal functions

or atoms were established. Recently, Yang et al. [42] characterized Hp(·)(Rn) via Riesz

transforms with p(·) satisfying the same conditions as in [10].
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It is well known that, when studying the boundedness of some operators in the critical

case, the weak Hardy space WHp(Rn) with p ∈ (0, 1] is a good substitute of the Hardy

space Hp(Rn) (see [5, 6, 13, 16, 23, 28, 31, 40]). Moreover, the space WHp(Rn) was proved

as the intermediate space in the real interpolation between the Hardy space Hp(Rn) and

the space L∞(Rn) (see [1, 14, 25, 46]). Motivated by these, Yan et al. [40] first intro-

duced the variable weak Hardy spaces WHp(·)(Rn) via the radial grand maximal func-

tion and characterized these spaces by means of maximal functions, atoms, molecules and

Littlewood-Paley functions. As an application, the authors in [40] proved the boundedness

of Calderón-Zygmund operators from the variable Hardy space Hp(·)(Rn) to WHp(·)(Rn)

including the critical case. Very recently, Zhuo et al. [46] proved that the real interpolation

between the spaces Hp(·)(Rn) and L∞(Rn) is just WHp(·)(Rn) by a decomposition for any

distribution of WHp(·)(Rn) into “good” and “bad” parts.

On the other hand, the study of the intrinsic square function on several function

spaces has recently attracted many attentions. To be precise, Wilson [33] first introduced

intrinsic square functions to settle a conjecture proposed by Fefferman and Stein [15] on the

boundedness of the Lusin area function S(f) from the weighted Lebesgue space L2
M(v)(R

n)

to the weighted Lebesgue space L2
v(Rn), where 0 ≤ v ∈ L1

loc(Rn) and M(v) denotes

the Hardy-Littlewood maximal function of v. The boundedness of these intrinsic square

functions on the weighted Lebesgue spaces Lpω(Rn), when p ∈ (1,∞) and ω belongs to

Muckenhoupt weights Ap(Rn), was proved by Wilson [34]. The intrinsic square functions,

which can be thought of as “grand maximal” square functions in the style of the “grand

maximal function” of Fefferman and Stein from [15], dominate all the square functions of

the form S(f) (and the classical ones as well), but are not essentially bigger than any one

of them. Similar to the Fefferman-Stein and the Hardy-Littlewood maximal functions,

their generic natures make them pointwise equivalent to each other and extremely easy to

work with. Moreover, the intrinsic Lusin area function has the distinct advantage of being

pointwise comparable at different cone openings, which is a property long known not to

hold true for the classical Lusin area function; see Wilson [33–36] and also Lerner [20,21].

Later, Huang and Liu in [18] obtained the intrinsic square functions characterizations

of the weighted Hardy space H1
ω(Rn) under the additional assumption that f ∈ L1

ω(Rn),

which was further generalized to the weighted Hardy space, Hp
ω(Rn) with p ∈ (n/(n +

α), 1) and α ∈ (0, 1] by Wang and Liu in [32], under the additional assumption that

f ∈ (Lip(α, 1, 0))∗, where (Lip(α, 1, 0))∗ denotes the dual space of the Lipschitz space

Lip(α, 1, 0). Recently, Liang and Yang in [22] established the s-order intrinsic square

function characterizations of the Musielak-Orlicz Hardy space Hϕ(Rn) in terms of the

intrinsic Lusin area function, the intrinsic g-function, and the g∗λ-function with the best-

known range λ ∈ (2+2(α+s)/n,∞), which essentially improved the known results in [18]
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and [32]. Very recently, Zhuo et al. [45] generalized the corresponding results in [22] to

the variable Hardy space Hp(·)(Rn) with λ ∈ (3 + 2(α+ s)/n,∞). Yan [39] generalized to

the weak Musielak-Orlicz Hardy space WHϕ(Rn) with the best-known range. In addition,

Wang [30] obtained the boundedness of the intrinsic square function on the weighted weak

Hardy space WHp
ω(Rn) with λ ∈ (3+2α/n,∞). More applications of such intrinsic square

functions were also given by Wilson [35,36] and Lerner [20,21].

In this article, we establish the intrinsic square function characterizations of the vari-

able weak Hardy space WHp(·)(Rn) introduced by Yan et al. in [40], including the intrinsic

Littlewood-Paley g-function, the intrinsic Lusin area function and the intrinsic g∗λ-function

by using the atomic and Littlewood-Paley function characterizations theorems of the space

WHp(·)(Rn) obtained in [40].

To state the results, we first make some conventions on notation. Let N := {1, 2, . . .}
and Z+ := N∪{0}. We denote by C a positive constant which is independent of the main

parameters, but may vary from line to line. We use C(α,...) to denote a positive constant

depending on the indicated parameters α, . . .. The symbol A . B means A ≤ CB. If

A . B and B . A, we then write A ∼ B. If E is a subset of Rn, we denote by χE its

characteristic function and by E{ the set Rn \E. For all r ∈ (0,∞) and x ∈ Rn, denote by

B(x, r) the ball centered at x with the radius r, namely, B(x, r) := {y ∈ Rn : |x− y| < r}.
For any ball B, we use xB to denote its center and rB its radius, and denote by λB for

any λ ∈ (0,∞) the ball concentric with B having the radius λrB.

We also recall some notation about variable Lebesgue spaces. For an exposition of

these concepts, we refer the reader to the monographs [8, 11]. A measurable function

p(·) : Rn → (0,∞) is called a variable exponent. Denote by P(Rn) the collection of all

variable exponents p(·) satisfying

(1.1) 0 < p− := ess inf
x∈Rn

p(x) ≤ ess sup
x∈Rn

p(x) =: p+ <∞.

For a measurable function f on Rn and p(·) ∈ P(Rn), the modular functional (or,

simply, the modular) %p(·), associated with p(·), is defined by setting

%p(·)(f) :=

∫
Rn
|f(x)|p(x) dx

and the Luxemburg (also known as the Luxemburg-Nakano) quasi-norm is given by setting

‖f‖Lp(·)(Rn) := inf{λ ∈ (0,∞) : %p(·)(f/λ) ≤ 1}.

Definition 1.1. Let p(·) ∈ P(Rn).

(i) The variable Lebesgue space Lp(·)(Rn) is defined to be the set of all measurable

functions f such that ‖f‖Lp(·)(Rn) <∞.
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(ii) The variable weak Lebesgue space WLp(·)(Rn) is defined to be the set of all measurable

functions f such that

‖f‖WLp(·)(Rn) := sup
α∈(0,∞)

α
∥∥χ{x∈Rn:|f(x)|>α}

∥∥
Lp(·)(Rn)

<∞.

Remark 1.2. Let p(·) ∈ P(Rn) and f ∈ Lp(·)(Rn).

(i) ‖f‖Lp(·)(Rn) ≥ 0, and ‖f‖Lp(·)(Rn) = 0 if and only if f(x) = 0 for almost every x ∈ Rn.

(ii) For all λ ∈ C, ‖λf‖Lp(·)(Rn) = |λ|‖f‖Lp(·)(Rn).

(iii) For all s ∈ (0,∞), ∥∥|f |s∥∥
Lp(·)(Rn)

= ‖f‖s
Lsp(·)(Rn)

.

Moreover, for all ` ∈ (0, p],

‖f + g‖`
Lp(·)(Rn)

≤ ‖f‖`
Lp(·)(Rn)

+ ‖g‖`
Lp(·)(Rn)

,

here and hereafter,

(1.2) p := min{p−, 1}

with p− as in (1.1). Particularly, when p− ∈ [1,∞), Lp(·)(Rn) is a Banach space

(see [11, Theorem 3.2.7]).

The following Fatou lemma of Lp(·)(Rn) was obtained in [8, Theorem 2.61].

Lemma 1.3. Let p(·) : Rn → [1,∞) and {fk}k∈N ⊂ Lp(·)(Rn). If fk → f as k →∞ point-

wise almost everywhere in Rn and lim infk→∞ ‖fk‖Lp(·)(Rn) is finite, then f ∈ Lp(·)(Rn)

and

‖f‖Lp(·)(Rn) ≤ lim inf
k→∞

‖fk‖Lp(·)(Rn).

A function p(·) ∈ P(Rn) is said to satisfy the globally log-Hölder continuous condition,

denoted by p(·) ∈ C log(Rn), if there exist positive constants Clog(p) and C∞, and p∞ ∈ R
such that, for all x, y ∈ Rn,

|p(x)− p(y)| ≤
Clog(p)

log(e+ 1/|x− y|)

and

|p(x)− p∞| ≤
C∞

log(e+ |x|)
.

In what follows, denote by S(Rn) the space of all Schwartz functions and S ′(Rn) its

topological dual space equipped with the weak-∗ topology. For any N ∈ N, let

FN (Rn) :=

{
ψ ∈ S(Rn) :

∑
β∈Zn+,|β|≤N

sup
x∈Rn

[
(1 + |x|)N |Dβψ(x)|

]
≤ 1

}
,
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where, for any β := (β1, . . . , βn) ∈ Zn+, |β| := β1 + · · ·+ βn and Dβ :=
(
∂
∂x1

)β1 · · · ( ∂
∂xn

)βn .

Then, for all f ∈ S ′(Rn), the radial grand maximal function f∗N,+ of f is defined by setting,

for all x ∈ Rn,

f∗N,+(x) := sup{|f ∗ ψt(x)| : t ∈ (0,∞) and ψ ∈ FN (Rn)},

here and hereafter, for all t ∈ (0,∞), ψt(·) := t−nψ( · /t).
For any measurable set E ⊂ Rn and r ∈ (0,∞), let Lr(E) be the set of all measurable

functions f such that

‖f‖Lr(E) :=

[∫
E
|f(x)|r dx

]1/r

<∞.

For r ∈ (0,∞), denote by Lrloc(Rn) the set of all r-locally integrable functions on Rn. Recall

that the Hardy-Littlewood maximal operator M is defined by setting, for all f ∈ L1
loc(Rn)

and x ∈ Rn,

(1.3) M(f)(x) := sup
B3x

1

|B|

∫
B
|f(y)| dy,

where the supremum is taken over all balls B of Rn containing x.

Now we recall the definitions of the variable Hardy space (see [26,45]) and the variable

weak Hardy space (see [40,46]).

Definition 1.4. Let p(·) ∈ C log(Rn) and N ∈ (n/p + n + 1,∞) be a positive integer,

where p is as in (1.2).

(i) The variable Hardy space Hp(·)(Rn) is defined to be the set of all f ∈ S ′(Rn) such

that f∗N,+ ∈ Lp(·)(Rn), equipped with the quasi-norm

‖f‖Hp(·)(Rn) := ‖f∗N,+‖Lp(·)(Rn).

(ii) The variable weak Hardy space WHp(·)(Rn) is defined to be the set of all f ∈ S ′(Rn)

such that f∗N,+ ∈WLp(·)(Rn), equipped with the quasi-norm

‖f‖WHp(·)(Rn) := ‖f∗N,+‖WLp(·)(Rn).

Remark 1.5. (i) The spaces Hp(·)(Rn) and WHp(·)(Rn) are independent of the choice of

N ∈ (n/p+ n+ 1,∞), see [26, Theorem 3.3] and [40, Remark 2.14(i)].

(ii) If p(·) ≡ p ∈ (0,∞), the spaces Hp(·)(Rn) and WHp(·)(Rn) are, respectively, classical

Hardy space Hp(Rn) and classical weak Hardy space WHp(Rn).
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For any s ∈ Z+, Cs(Rn) denotes the set of all functions having continuous classical

derivatives up to an order of not more than s. For α ∈ (0, 1] and s ∈ Z+, let Cα,s(Rn) be

the set of functions φ ∈ Cs(Rn) such that suppφ ⊂ {x ∈ Rn : |x| ≤ 1},
∫
Rn φ(x)xγ dx = 0

for all γ ∈ Zn+ and |γ| ≤ s, and, for all x1, x2 ∈ Rn and ν ∈ Zn+ with |ν| = s,

(1.4) |Dνφ(x1)−Dνφ(x2)| ≤ |x1 − x2|α.

For all f ∈ L1
loc(Rn) and (y, t) ∈ Rn+1

+ := Rn × (0,∞), let

Aα,s(f)(y, t) := sup
φ∈Cα,s(Rn)

|f ∗ φt(y)|.

Then, the intrinsic g-function, the intrinsic Lusin area integral, and the intrinsic g∗λ-

function of f are, respectively, defined by setting, for all x ∈ Rn and λ ∈ (0,∞),

gα,s(f)(x) :=

{∫ ∞
0

[
Aα,s(f)(x, t)

]2 dt
t

}1/2

,

Sα,s(f)(x) :=

{∫
Γ(x)

[Aα,s(f)(y, t)]2
dy dt

tn+1

}1/2

and

g∗λ,α,s(f)(x) :=

{∫ ∞
0

∫
Rn

( t

t+ |x− y|

)λn
[Aα,s(f)(y, t)]2

dy dt

tn+1

}1/2

,

here and hereafter, Γ(x) := {(y, t) ∈ Rn+1
+ : |y − x| < t}.

We also recall another kind of similar-looking square functions, defined via convolutions

with kernels that have unbounded supports. For α ∈ (0, 1], s ∈ Z+ and ε ∈ (0,∞), let

C(α,ε),s(Rn) be the set of functions φ ∈ Cs(Rn) such that, for all x ∈ Rn, γ ∈ Zn+ and

|γ| ≤ s, |Dγφ(x)| ≤ (1 + |x|)−n−ε,
∫
Rn φ(x)xγ dx = 0 and, for all x1, x2 ∈ Rn, ν ∈ Zn+ with

|ν| = s,

|Dνφ(x1)−Dνφ(x2)| ≤ |x1 − x2|α[(1 + |x1|)−n−ε + (1 + |x2|)−n−ε].

Remark that, in what follows, the parameter ε usually has to be chosen to be large enough.

For all f satisfying

(1.5) |f(·)|(1 + | · |)−n−ε ∈ L1(Rn)

and (y, t) ∈ Rn+1
+ , let

Ã(α,ε),s(f)(y, t) := sup
φ∈C(α,ε),s(Rn)

|f ∗ φt(y)|.
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Then, for all x ∈ Rn and λ ∈ (0,∞), we let

g̃(α,ε),s(f)(x) :=

{∫ ∞
0

[
Ã(α,ε),s(f)(x, t)

]2 dt
t

}1/2

,

S̃(α,ε),s(f)(x) :=

{∫
Γ(x)

[
Ã(α,ε),s(f)(y, t)

]2 dy dt
tn+1

}1/2

and

g̃∗λ,(α,ε),s(f)(x) :=

{∫ ∞
0

∫
Rn

( t

t+ |x− y|

)λn[
Ã(α,ε),s(f)(y, t)

]2 dy dt
tn+1

}1/2

.

These intrinsic square functions, when s = 0, were originally introduced by Wilson [33],

which were further generalized to s ∈ Z+ by Liang and Yang [22].

Recall that f ∈ S ′(Rn) is said to vanish weakly at infinity if, for every φ ∈ S(Rn),

f ∗ φt → 0 in S ′(Rn) as t→∞ (see, for example, [17, p. 50]).

Now we state the main results of this article.

Theorem 1.6. Let p(·) ∈ C log(Rn) and p+ ∈ (0, 1]. Assume that α ∈ (0, 1], s ∈ Z+ and

p− ∈ (n/(n+ α+ s), 1].

(i) If f ∈ S ′(Rn), f vanishes weakly at infinity and gα,s(f) ∈ WLp(·)(Rn), then f ∈
WHp(·)(Rn), moreover, there exists a positive constant C, independent of f , such

that

‖f‖WHp(·)(Rn) ≤ C‖gα,s(f)‖WLp(·)(Rn);

(ii) If f ∈ (C(α,ε),s(Rn))∗, with (C(α,ε),s(Rn))∗ being the dual space of C(α,ε),s(Rn), then

there exists a positive constant C such that, for all f ∈ WHp(·)(Rn), it holds true

that

‖gα,s(f)‖WLp(·)(Rn) ≤ C‖f‖WHp(·)(Rn).

The same is true if gα,s(f) is replaced, respectively, by Sα,s(f), g̃(α,ε),s(f) and S̃(α,ε),s(f)

with ε ∈ (max{α, s},∞).

Theorem 1.7. Let p(·) ∈ C log(Rn) and p+ ∈ (0, 1]. Assume that α ∈ (0, 1], s ∈ Z+,

p− ∈ (n/(n+ α+ s), 1] and λ ∈ (3 + 2(α+ s)/n,∞).

(i) If f ∈ S ′(Rn), f vanishes weakly at infinity and g∗λ,α,s(f) ∈ WLp(·)(Rn), then f ∈
WHp(·)(Rn), moreover, there exists a positive constant C, independent of f , such

that

‖f‖WHp(·)(Rn) ≤ C‖g
∗
λ,α,s(f)‖WLp(·)(Rn);

(ii) If f ∈ (C(α,ε),s(Rn))∗, then there exists a positive constant C such that, for all f ∈
WHp(·)(Rn), it holds true that

‖g∗λ,α,s(f)‖WLp(·)(Rn) ≤ C‖f‖WHp(·)(Rn).
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The same is true if g∗λ,α,s(f) is replaced by g̃∗λ,(α,ε),s(f) with ε ∈ (max{α, s},∞).

Remark 1.8. (i) We point out that there exists a positive constant C such that, for all

φ ∈ Cα,s(Rn), Cφ ∈ C(α,ε),s(Rn) and hence the intrinsic square functions are well

defined for functionals in (C(α,ε),s(Rn))∗.

(ii) Recall that Wang [30] obtained the boundedness of the intrinsic square functions on

the weighted weak Hardy spaceWHp
w(Rn). Moreover, for α ∈ (0, 1], p ∈ (n/(n+α), 1]

and w ∈ Ap(1+α/n)(Rn), Wang [30] established the boundedness of the intrinsic

Littlewood-Paley g∗λ function with λ ∈ (3 + 2α/n,∞), which coincides with the case

when s = 0 and p(x) ≡ p for all x ∈ Rn of Theorem 1.7(ii).

(iii) Recently, Yan [39] characterized the weak Musielak-Orlicz Hardy space WHϕ(Rn)

in terms of the intrinsic Littlewood-Paley g∗λ-functions with λ ∈ (2 + 2(α+s)/n,∞),

which coincides with the best known range of the g∗λ-functions characterizations

for the classical Hardy space Hp(Rn) (see, for example, [2, 17]). However, as was

mentioned in [45, Remark 1.11(ii)], it is unclear whether the intrinsic g∗λ-functions,

when λ ∈ (2 + 2(α + s)/n, 3 + 2(α + s)/n), can characterize the space WHp(·)(Rn)

or not, since the method used in the proof of [39, Theorem 1.7] strongly depends on

the properties of uniformly Muckenhoupt weights.

This article is organized as follows. Section 2 is devoted to the proofs of Theorems 1.6

and 1.7. The key tools used to prove Theorem 1.6 are the fact that the intrinsic square

functions are pointwise comparable as was proved in [22] (see also Lemmas 2.8 and 2.9

below), the atomic decomposition and Littlewood-Paley g-function characterizations of

WHp(·)(Rn) established in [40] (see also Propositions 2.1 and 2.2 below). As an application

of Theorem 1.6, we give the proof of Theorem 1.7 by showing that, for all x ∈ Rn, the

intrinsic square functions g̃∗λ,(α,ε),s(f)(x) and S̃(α,ε),s(f)(x) are pointwise comparable under

the assumption λ ∈ (3 + 2(α+ s)/n,∞).

2. Proofs of main results

We first recall the variable weak atomic Hardy space introduced by Yan [40]. Let p(·) ∈
C log(Rn), q ∈ (1,∞] and s ∈ (n/p− − n − 1,∞) ∩ Z+ with p− as in (1.1). A measurable

function a on Rn is called a (p(·), q, s)-atom if there exists a ball B such that

(i) supp a ⊂ B;

(ii) ‖a‖Lq(Rn) ≤
|B|1/q

‖χB‖Lp(·)(Rn)

;

(iii)
∫
Rn a(x)xα dx = 0 for all α ∈ Zn+ with |α| ≤ s.
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The variable weak atomic Hardy space, denoted by WH
p(·),q,s
atom (Rn), is defined as the

space of all f ∈ S ′(Rn) which can be decomposed as

f =
∑
i∈Z

∑
j∈N

λi,jai,j in S ′(Rn),

where {ai,j}i∈Z,j∈N is a sequence of (p(·), q, s)-atoms, associated with balls {Bi,j}i∈Z,j∈N,

satisfying that there exists a positive constant c ∈ (0, 1] such that, for all x ∈ Rn and i ∈ Z,∑
j∈N χcBi,j (x) ≤ C with C being a positive constant independent of x and i and, for all

i ∈ Z and j ∈ N, λi,j := C̃2i‖χBi,j‖Lp(·)(Rn) with C̃ being a positive constant independent

of i and j.

Moreover, for any f ∈WHp(·),q,s
atom (Rn), define

‖f‖
WH

p(·),q,s
atom (Rn)

:= inf

sup
i∈Z

∥∥∥∥{∑
j∈N

[
λi,jχBi,j

‖χBi,j‖Lp(·)(Rn)

]p}1/p∥∥∥∥
Lp(·)(Rn)

 ,
where the infimum is taken over all decompositions of f as above.

Proposition 2.1. Let p(·) ∈ C log(Rn), s ∈ (n/p−−n−1,∞)∩Z+ and q ∈ (max{p+, 1},∞]

with p− and p+ as in (1.1). Then WHp(·)(Rn) = WH
p(·),q,s
atom (Rn) with equivalent quasi-

norms.

Let φ ∈ S(Rn) be a radial function satisfying

suppφ ⊂ {x ∈ Rn : |x| ≤ 1},∫
Rn
φ(x)xγ dx = 0 for all γ ∈ Zn+ with |γ| ≤ max

{⌊
n

p−
− n− 1

⌋
, 0

}
and ∫ ∞

0
|φ̂(ξt)|2 dt

t
= 1 for all ξ ∈ Rn \ {~0n}.

Recall that, for all f ∈ S ′(Rn), the Littlewood-Paley g-function and the g∗λ-function of f

with λ ∈ (0,∞) are defined, respectively, by setting, for all x ∈ Rn,

g(f)(x) :=

[∫ ∞
0
|f ∗ φt(x)|2 dt

t

]1/2

and

g∗λ(f)(x) :=

[ ∫ ∞
0

∫
Rn

( t

t+ |x− y|

)λn
|f ∗ φt(y)|2 dy dt

tn+1

]1/2

.

The following conclusions are just [40, Theorems 6.2 and 6.3].
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Proposition 2.2. Let p(·) ∈ C log(Rn). Then f ∈ WHp(·)(Rn) if and only if f ∈ S ′(Rn),

f vanishes weakly at infinity and g(f) ∈WLp(·)(Rn). Moreover, for all f ∈WHp(·)(Rn),

C−1‖g(f)‖WLp(·)(Rn) ≤ ‖f‖WHp(·)(Rn) ≤ C‖g(f)‖WLp(·)(Rn),

where C is a positive constant independent of f .

Proposition 2.3. Let p(·) ∈ C log(Rn) and λ ∈
(
1 + 2

min{p−,2} ,∞
)
. Then f ∈WHp(·)(Rn)

if and only if f ∈ S ′(Rn), f vanishes weakly at infinity and g∗λ(f) ∈WLp(·)(Rn). Moreover,

for all f ∈WHp(·)(Rn),

C−1‖g∗λ(f)‖WLp(·)(Rn) ≤ ‖f‖WHp(·)(Rn) ≤ C‖g
∗
λ(f)‖WLp(·)(Rn),

where C is a positive constant independent of f .

To prove Theorems 1.6 and 1.7, we need more preparations. The following Fefferman-

Stein vector-valued inequality of the Hardy-Littlewood maximal operator M on the vari-

able Lebesgue space Lp(·)(Rn) was obtained in [9, Corollary 2.1].

Lemma 2.4. Let r ∈ (1,∞). Assume that p(·) ∈ C log(Rn) satisfying 1 < p− ≤ p+ < ∞.

Then there exists a positive constant C such that, for all sequences {fj}∞j=1 of measurable

functions, ∥∥∥∥{ ∞∑
j=1

[M(fj)]
r

}1/r∥∥∥∥
Lp(·)(Rn)

≤ C
∥∥∥∥( ∞∑

j=1

|fj |r
)1/r∥∥∥∥

Lp(·)(Rn)

,

where M denotes the Hardy-Littlewood maximal operator as in (1.3).

From this, and the fact that, for all balls B ⊂ Rn, β ∈ [1,∞) and r ∈ (0, p), χβB ≤
βn/r[M(χB)]1/r, we obtain the following conclusion, the details being omitted.

Lemma 2.5. Let p(·) ∈ C log(Rn), r ∈ (0, p) and β ∈ [1,∞). Then there exists a positive

constant C such that, for any sequence {Bj}j∈N of balls of Rn,∥∥∥∥∑
j∈N

χβBj

∥∥∥∥
Lp(·)(Rn)

≤ Cβn/r
∥∥∥∥∑
j∈N

χBj

∥∥∥∥
Lp(·)(Rn)

.

The following conclusion is just [40, Remark 4.3].

Lemma 2.6. Let f ∈WHp(·),q,s
atom (Rn). Then

‖f‖
WH

p(·),q,s
atom (Rn)

∼ sup
i∈Z

2i
∥∥∥∥(∑

j∈N
χBi,j

)1/p∥∥∥∥
Lp(·)(Rn)

∼ sup
i∈Z

2i
∥∥∥∥(∑

j∈N
χcBi,j

)1/p∥∥∥∥
Lp(·)(Rn)

∼ sup
i∈Z

2i
∥∥∥∥∑
j∈N

χcBi,j

∥∥∥∥
Lp(·)(Rn)

∼ sup
i∈Z

2i
∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥
Lp(·)(Rn)

,

where c ∈ (0, 1] and the implicit equivalent positive constants are independent of f .
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As a variant of [29, Lemma 4.1], the following lemma was obtained in [40, Lemma 4.5].

Lemma 2.7. Let p(·) ∈ C log(Rn), b ∈ (0, p] and r ∈ [1,∞] ∩ (p+,∞]. Then there exists

a positive constant C such that, for all sequences {Bj}j∈N of balls, numbers {λj}j∈N ⊂ C
and measurable functions {aj}j∈N satisfying that, for each j ∈ N, supp aj ⊂ Bj and

‖aj‖Lr(Rn) ≤ |Bj |1/r, it holds true that∥∥∥∥(∑
j∈N
|λjaj |b

)1/b∥∥∥∥
Lp(·)(Rn)

≤ C
∥∥∥∥(∑

j∈N
|λjχBj |b

)1/b∥∥∥∥
Lp(·)(Rn)

.

The following lemma is just [22, Proposition 2.4], which, in the case when s = 0, was

first proved by Wilson [33, p. 784].

Lemma 2.8. Let α ∈ (0, 1], s ∈ Z+ and ε ∈ (0,∞). Then, for all f satisfying (1.5) and

x ∈ Rn, it holds true that

gα,s(f)(x) ∼ Sα,s(f)(x) and g̃(α,ε),s(f)(x) ∼ S̃(α,ε),s(f)(x)

with the implicit positive constants independent of f .

The following lemma is just [22, Theorem 2.6], which, in the case when s = 0, was first

proved by Wilson [33, p. 775].

Lemma 2.9. Let α ∈ (0, 1], s ∈ Z+ and ε ∈ (max{α, s},∞). Then there exists a positive

constant C such that, for all f satisfying (1.5) and x ∈ Rn,

1

C
gα,s(f)(x) ≤ g̃(α,ε),s(f)(x) ≤ Cgα,s(f)(x).

The following Lemma 2.10 is a special case of [22, Proposition 3.2].

Lemma 2.10. Let α ∈ (0, 1], s ∈ Z+ and q ∈ (1,∞). Then there exists a positive constant

C such that, for all measurable functions f ,∫
Rn

[gα,s(f)(x)]q dx ≤ C
∫
Rn
|f(x)|q dx.

Proof of Theorem 1.6. For ε ∈ (max{α, s},∞), by Lemmas 2.8 and 2.9, we see that

gα,s(f), Sα,s(f), g̃(α,ε),s(f) and S̃(α,ε),s(f) are pointwise comparable. Thus, to prove this

theorem, we only need to consider gα,s(f) in our proof.

Since α ∈ (0, 1], s ∈ Z+ and p− ∈ (n/(n+ α+ s), 1], it follows that

(2.1) s ∈
(
n

p−
− n− 1,∞

)
∩ Z+.

Notice that, for all x ∈ Rn,

g(f)(x) . gα,s(f)(x).
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From this, the facts that f ∈ S ′(Rn) vanishes weakly at infinity, gα,s(f) ∈WLp(·)(Rn) and

Proposition 2.2, we conclude that f ∈WHp(·)(Rn) and

‖f‖WHp(·)(Rn) . ‖g(f)‖WLp(·)(Rn) . ‖gα,s(f)‖WLp(·)(Rn).

This finishes the proof of Theorem 1.6(i).

It therefore remains to prove Theorem 1.6(ii). Let f ∈WHp(·)(Rn) and q ∈ (1,∞). By

the fact that p+ ∈ (0, 1], (2.1) and Proposition 2.1, we know that there exists a sequence

{ai,j}i∈Z,j∈N of (p(·), q, s)-atoms, associated with balls {Bi,j}i∈Z,j∈N, and {λi,j}i∈Z,j∈N ⊂ C
such that

f =
∑
i∈Z

∑
j∈N

λi,jai,j in S ′(Rn)

and

(2.2) ‖f‖WHp(·)(Rn) = ‖f‖
WH

p(·),q,s
atom (Rn)

.

For any given β ∈ (0,∞), we choose i0 ∈ Z such that 2i0 ≤ β < 2i0+1 and write

f =

i0−1∑
i=−∞

∑
j∈N

λi,jai,j +

∞∑
i=i0

∑
j∈N

λi,jai,j =: f1 + f2.

Thus, by Remark 1.2(iii), we find that∥∥χ{x∈Rn:gα,s(f)(x)>β}
∥∥
Lp(·)(Rn)

.
∥∥χ{x∈Rn:gα,s(f1)(x)>β/2}

∥∥
Lp(·)(Rn)

+
∥∥χ{x∈Ai0 :gα,s(f2)(x)>β/2}

∥∥
Lp(·)(Rn)

+
∥∥χ{x∈(Ai0 ){:gα,s(f2)(x)>β/2}

∥∥
Lp(·)(Rn)

=: I1 + I2 + I3,

(2.3)

where Ai0 :=
⋃∞
i=i0

⋃
j∈N(2Bi,j).

It is easy to see that

I1 .
∥∥χ{x∈Rn:

∑i0−1
i=−∞

∑
j∈N λi,jgα,s(ai,j)(x)χ2Bi,j

(x)>β/4}

∥∥
Lp(·)(Rn)

+
∥∥χ{x∈Rn:

∑i0−1
i=−∞

∑
j∈N λi,jgα,s(ai,j)(x)χ

(2Bi,j)
{ (x)>β/4}

∥∥
Lp(·)(Rn)

=: I1,1 + I1,2.
(2.4)

To estimate I1,1, for any b ∈ (0, p), let q1 ∈ (1,min{q, 1/b}) and a ∈ (0, 1 − 1/q1).

Then, by the Hölder inequality, we find that, for all x ∈ Rn,

i0−1∑
i=−∞

∑
j∈N

λi,jgα,s(ai,j)(x)χ2Bi,j (x)

≤
( i0−1∑
i=−∞

2iaq
′
1

)1/q′1
{ i0−1∑
i=−∞

2−iaq1
[∑
j∈N

λi,jgα,s(ai,j)(x)χ2Bi,j (x)

]q1}1/q1
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=
2i0a

(2aq
′
1 − 1)1/q′1

{ i0−1∑
i=−∞

2−iaq1
[∑
j∈N

λi,jgα,s(ai,j)(x)χ2Bi,j (x)

]q1}1/q1

,

where q′1 denotes the conjugate exponent of q1, namely, 1/q1 + 1/q′1 = 1. From this, the

fact that q1b < 1, the value of λi,j , Remark 1.2(iii) and Lemma 1.3, we deduce that

I1,1 ≤
∥∥∥∥χ{

x∈Rn: 2i0a

(2
aq′1−1)

1/q′1

[∑i0−1
i=−∞ 2−iaq1

{∑
j∈N λi,jgα,s(ai,j)(x)χ2Bi,j

(x)
}q1]1/q1

>2i0−2

}∥∥∥∥
Lp(·)(Rn)

. 2−i0q1(1−a)
∥∥∥∥ i0−1∑
i=−∞

2−iaq1
[∑
j∈N

λi,jgα,s(ai,j)χ2Bi,j

]q1∥∥∥∥
Lp(·)(Rn)

. 2−i0q1(1−a)
∥∥∥∥ i0−1∑
i=−∞

2(1−a)iq1b
∑
j∈N

[
‖χBi,j‖Lp(·)(Rn)gα,s(ai,j)χ2Bi,j

]q1b∥∥∥∥1/b
Lp(·)/b(Rn)

. 2−i0q1(1−a)
[ i0−1∑
i=−∞

2(1−a)iq1b
∥∥∥∥{∑

j∈N

[
‖χBi,j‖Lp(·)(Rn)gα,s(ai,j)χ2Bi,j

]q1b}1/b∥∥∥∥b
Lp(·)(Rn)

]1/b
.

Now let r := q/q1. Then r ∈ (1,∞) and, by Lemma 2.10, we find that, for all i ∈ Z and

j ∈ N,∥∥∥[‖χBi,j‖Lp(·)(Rn)gα,s(ai,j)χ2Bi,j

]q1∥∥∥
Lr(Rn)

. ‖χBi,j‖
q1
Lp(·)(Rn)

‖gα,s(ai,j)χ2Bi,j‖
q1
Lq(Rn)

. |Bi,j |1/r.

Therefore, by Lemmas 2.7, 2.5 and 2.6, we conclude that

I1,1 . 2−i0q1(1−a)

[ i0−1∑
i=−∞

2(1−a)iq1b

∥∥∥∥(∑
j∈N

χ2Bi,j

)1/b∥∥∥∥b
Lp(·)(Rn)

]1/b

. 2−i0q1(1−a)

[ i0−1∑
i=−∞

2(1−a)iq1b

∥∥∥∥(∑
j∈N

χcBi,j

)1/b∥∥∥∥b
Lp(·)(Rn)

]1/b

. 2−i0q1(1−a)

{ i0−1∑
i=−∞

2[(1−a)q1−1]ib

}1/b

sup
i∈Z

2i
∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥
Lp(·)(Rn)

∼ β−1‖f‖
WH

p(·),q,s
atom (Rn)

,

which implies that

(2.5) β I1,1 . ‖f‖
WH

p(·),q,s
atom (Rn)

.

To deal with I1,2, we need some estimates on gα,s(ai,j). Let φ ∈ Cα,s(Rn) and, for any

i ∈ Z and j ∈ N, Bi,j := B(xi,j , ri,j) with some xi,j ∈ Rn and ri,j ∈ (0,∞). From the

vanishing moment of ai,j , Taylor’s remainder theorem, (1.4) and the Hölder inequality, we
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deduce that, for all i ∈ Z ∩ (−∞, i0 − 1], j ∈ N, t ∈ (0,∞) and x ∈ (2Bi,j)
{,

|ai,j ∗ φt(x)| =
∣∣∣∣ ∫

Bi,j

ai,j(y)

[
φ
(x− y

t

)
−
∑
|γ|≤s

Dγφ
(x−xi,j

t

)
γ!

(xi,j − y
t

)γ]dy
tn

∣∣∣∣
∼
∣∣∣∣ ∫

Bi,j

ai,j(y)

{ ∑
|γ|=s

[
Dγφ(ξ)−Dγφ

(x− xi,j
t

)](xi,j − y
t

)γ}dy
tn

∣∣∣∣
∼
∣∣∣∣ ∫

Bi,j

ai,j(y)

{ ∑
|γ|=s

(θ|xi,j − y|
t

)α(xi,j − y
t

)γ}dy
tn

∣∣∣∣
.
ri,j

α+s

tn+α+s

[ ∫
Bi,j

|ai,j(y)|q dy
]1/q(∫

Bi,j

1 dy

)1/q′

. ‖χBi,j‖
−1
Lp(·)(Rn)

(ri,j
t

)n+α+s
,

(2.6)

where ξ = [(x− xi,j) + θ(xi,j − y)]/t for some θ ∈ (0, 1).

Notice that suppφ ⊂ {x ∈ Rn : |x| ≤ 1}. If x ∈ (2Bi,j)
{ and ai,j ∗ φt(x) 6= 0, then,

there exists a y ∈ Bi,j such that |x−y|/t ≤ 1 and hence t ≥ |x−y| ≥ |x−xi,j |−|xi,j−y| ≥
|x− xi,j |/2. From this and (2.6), we deduce that

gα,s(ai,j)(x) =

{∫ ∞
0

[
sup

φ∈Cα,s(Rn)
|ai,j ∗ φt(x)|

]2 dt

t

}1/2

.
rn+α+s
i,j

‖χBi,j‖Lp(·)(Rn)

{∫ ∞
|x−xi,j |/2

t−2(n+α+s)−1 dt

}1/2

. ‖χBi,j‖
−1
Lp(·)(Rn)

( ri,j
|x− xi,j |

)n+α+s
.

[M(χBi,j )(x)](n+α+s)/n

‖χBi,j‖Lp(·)(Rn)

.

(2.7)

By this, the Hölder inequality, the value of λi,j , Remark 1.2(iii) and Lemmas 1.3, 2.4, 2.5

and 2.6, we find that, for any b ∈ (0, n/(n + α + s)), q2 ∈ (n/[(n + α + s)b], 1/b) and

a ∈ (0, 1− 1/q2),

I1,2 ≤
∥∥∥∥χ{

x∈Rn: 2i0a

(2
aq′2−1)

1/q′2

{∑i0−1
i=−∞ 2−iaq2

[∑
j∈N λi,jgα,s(ai,j)(x)χ(2Bi,j)

{ (x)
]q2}1/q2

>2i0−2

}∥∥∥∥
Lp(·)(Rn)

. 2−i0q2(1−a)
∥∥∥∥ i0−1∑
i=−∞

2−iaq2
[∑
j∈N

λi,jgα,s(ai,j)χ(2Bi,j){

]q2∥∥∥∥
Lp(·)(Rn)

. 2−i0q2(1−a)
{ i0−1∑
i=−∞

2(1−a)iq2b
∥∥∥∥∑
j∈N

[M(χBi,j )]
(n+α+s)q2b/n

∥∥∥∥
Lp(·)/b(Rn)

}1/b

∼ 2−i0q2(1−a)
{ i0−1∑
i=−∞

2(1−a)iq2b
∥∥∥∥{∑

j∈N
[M(χBi,j )]

(n+α+s)q2b
n

} n
(n+α+s)q2b

∥∥∥∥
(n+α+s)q2b

n

L
(n+α+s)q2p(·)

n (Rn)

}1/b

. 2−i0q2(1−a)
[ i0−1∑
i=−∞

2(1−a)iq2b
∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥
Lp(·)/b(Rn)

]1/b
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. 2−i0q2(1−a)
{ i0−1∑
i=−∞

2[(1−a)q2−1]ib2ib
∥∥∥∥(∑

j∈N
χcBi,j

)1/b∥∥∥∥b
Lp(·)(Rn)

}1/b

. β−1 sup
i∈Z

2i
∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥
Lp(·)(Rn)

∼ β−1‖f‖
WH

p(·),q,s
atom (Rn),

that is

β I1,2 . ‖f‖
WH

p(·),q,s
atom (Rn)

.

By this, combined with (2.4) and (2.5), we conclude that

(2.8) β I1 . ‖f‖
WH

p(·),q,s
atom (Rn)

.

For I2, we choose r1 ∈ [1/p,∞). Then, by Remark 1.2(iii), Lemmas 1.3, 2.5 and 2.6,

we conclude that

I2 ≤ ‖χAi0‖Lp(·)(Rn) ≤
∥∥∥∥ ∞∑
i=i0

∑
j∈N

χ2Bi,j

∥∥∥∥
Lp(·)(Rn)

.

∥∥∥∥ ∞∑
i=i0

∑
j∈N

χBi,j

∥∥∥∥
Lp(·)(Rn)

.

[ ∞∑
i=i0

∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥1/r1

Lp(·)(Rn)

]r1
∼
{ ∞∑
i=i0

2−i/r1
[
2i
∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥
Lp(·)(Rn)

]1/r1}r1
. sup

i∈Z
2i
∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥
Lp(·)(Rn)

( ∞∑
i=i0

2−i/r1
)r1
∼ β−1‖f‖

WH
p(·),q,s
atom (Rn)

,

which implies that

(2.9) β I2 . ‖f‖
WH

p(·),q,s
atom (Rn)

.

For I3, since p ∈ (n/(n + α + s), 1], it follows that there exists r2 ∈ (0,∞) such that

r2 ∈ (n/[p(n+α+s)], 1). By this, the value of λi,j , (2.7), Remark 1.2(iii) and Lemmas 1.3,

2.4 and 2.6, we find that

I3 ≤
∥∥∥χ{

x∈(Ai0 ){:
∑∞
i=i0

∑
j∈N λi,jgα,s(ai,j)(x)>β

}∥∥∥
Lp(·)(Rn)

≤ β−r2
∥∥∥∥ ∞∑
i=i0

∑
j∈N

[λi,jgα,s(ai,j)]
r2χ(Ai0 ){

∥∥∥∥
Lp(·)(Rn)

≤ β−r2
[ ∞∑
i=i0

∥∥∥∥{∑
j∈N

[λi,jgα,s(ai,j)]
r2χ(Ai0 ){

} n
r2(n+α+s)

∥∥∥∥
L
r2(n+α+s)

n p(·)(Rn)

] r2(n+α+s)
n

. β−r2
{ ∞∑
i=i0

2
in

n+α+s

∥∥∥∥{∑
j∈N

[M(χBi,j )]
r2(n+α+s)

n

} n
r2(n+α+s)

∥∥∥∥
L
r2(n+α+s)

n p(·)(Rn)

} r2(n+α+s)
n

. β−r2
[ ∞∑
i=i0

2
in

n+α+s

∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥ n
r2(n+α+s)

Lp(·)(Rn)

] r2(n+α+s)
n
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. sup
i∈Z

2i
∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥
Lp(·)(Rn)

β−r2
[ ∞∑
i=i0

2
in

n+α+s 2
− in
r2(n+α+s)

] r2(n+α+s)
n

∼ β−1‖f‖
WH

p(·),q,s
atom (Rn)

,

namely,

(2.10) β I3 . ‖f‖
WH

p(·),q,s
atom (Rn)

.

Combining with (2.3), (2.8), (2.9), (2.10) and (2.2), we obtain

‖gα,s(f)‖WLp(·)(Rn) = sup
β∈(0,∞)

β
∥∥χ{x∈Rn:gα,s(f)(x)>β}

∥∥
Lp(·)(Rn)

. sup
β∈(0,∞)

β(I1 + I2 + I3) . ‖f‖
WH

p(·),q,s
atom (Rn)

∼ ‖f‖WHp(·)(Rn),

which finishes the proof of Theorem 1.6(ii).

Proof of Theorem 1.7. Let f ∈ S ′(Rn), f vanishes weakly at infinity and g∗λ,α,s(f) ∈
WLp(·)(Rn). Since α ∈ (0, 1], s ∈ Z+, p− ∈ (n/(n+α+ s), 1] and λ ∈ (3 + 2(α+ s)/n,∞),

it follows that

λ > 3 +
2(α+ s)

n
> 3 +

2(1− p−)

p−
= 1 +

2

p−
= 1 +

2

min{p−, 2}
.

From this, the fact that for all x ∈ Rn, g∗λ(f)(x) . g∗λ,α,s(f)(x) . g̃∗λ,(α,ε),s(f)(x) and

Proposition 2.3, we conclude that f ∈WHp(·)(Rn) and

‖f‖WHp(·)(Rn) . ‖g
∗
λ(f)‖WLp(·)(Rn) . ‖g

∗
λ,α,s(f)‖WLp(·)(Rn) . ‖g̃

∗
λ,(α,ε),s(f)‖WLp(·)(Rn).

This finishes the proof of Theorem 1.7(i).

It therefore remains to prove Theorem 1.7(ii). Let f ∈ WHp(·)(Rn). Then, by an

argument similar to that used in [45, p. 1566], we conclude that for all α ∈ (0, 1], s ∈ Z+,

ε ∈ (max{α, s},∞), λ ∈ (3 + 2(α+ s)/n,∞) and x ∈ Rn,

g̃∗λ,(α,ε),s(f)(x) . S̃(α,ε),s(f)(x),

from this and Theorem 1.6(ii), we deduce that

‖g∗λ,α,s(f)‖WLp(·)(Rn) . ‖g̃
∗
λ,(α,ε),s(f)‖WLp(·)(Rn)

. ‖S̃(α,ε),s(f)‖WLp(·)(Rn) . ‖f‖WHp(·)(Rn),

which completes the proof of Theorem 1.7(ii).
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