Abstract
In this article, the authors characterize the variable Besov-type spaces $B_{p(\cdot),q(\cdot)}^{s(\cdot),\phi}(\mathbb{R}^n)$, with $1/p(\cdot)$ and $1/q(\cdot)$ satisfying the globally log-Hölder continuous conditions, via Peetre maximal functions and averages on balls. The latter characterization, via averages on balls, gives one way to introduce these spaces on metric measure spaces.
Citation
Ciqiang Zhuo. Der-Chen Chang. Dachun Yang. "Ball Average Characterizations of Variable Besov-type Spaces." Taiwanese J. Math. 23 (2) 427 - 452, April, 2019. https://doi.org/10.11650/tjm/181204
Information