Open Access
2016 Remarks on Normalized Solutions for $L^2$-Critical Kirchhoff Problems
Yonglong Zeng, Kuisheng Chen
Taiwanese J. Math. 20(3): 617-627 (2016). DOI: 10.11650/tjm.20.2016.6548
Abstract

We study a constraint minimization problem on $S_c = \{ u \in H^1(\mathbb{R}^N), |u|_2^2 = c, c \in (0, c^*) \}$ for the following $L^2$-critical Kirchhoff type functional:\begin{align*} E_\alpha(u) &= \frac{a}{2} \int_{\mathbb{R}^N} |\nabla u|^2 \, dx + \frac{b}{4} \left( \int_{\mathbb{R}^N} |\nabla u|^2 \, dx \right)^2 + \frac{1}{\alpha+2} \int_{\mathbb{R}^N} V(x) |u|^{\alpha+2} \, dx \\ &\quad - \frac{N}{2N+8} \int_{\mathbb{R}^2} |u|^{\frac{2N+8}{N}} \, dx,\end{align*}where $N \leq 3$, $a, b \gt 0$ are constants, $\alpha \in [0, \frac{8}{N})$ and $V(x) \in L^\infty(\mathbb{R}^N)$ is a suitable potential. We prove that the problem has at least one minimizer if $\alpha \in [2, \frac{8}{N})$ and the energy of the minimization problem is negative. Moreover, some non-existence results are obtained when the energy of the problem equals to zero.

References

1.

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), no. 1, 305–330.  10.1090/S0002-9947-96-01532-2 MR1333386 0858.35083 A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), no. 1, 305–330.  10.1090/S0002-9947-96-01532-2 MR1333386 0858.35083

2.

J. Bellazzini, L. Jeanjean and T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc. (3) 107 (2013), no. 2, 303–339.  10.1112/plms/pds072 MR3092340 1284.35391 J. Bellazzini, L. Jeanjean and T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc. (3) 107 (2013), no. 2, 303–339.  10.1112/plms/pds072 MR3092340 1284.35391

3.

S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivées partielles, Bull. Acad. Sci. URRS.Sér. Math. 4 (1940), 17–26. S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivées partielles, Bull. Acad. Sci. URRS.Sér. Math. 4 (1940), 17–26.

4.

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differential Equations 6 (2001), no. 6, 701–730.  1007.35049 M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differential Equations 6 (2001), no. 6, 701–730.  1007.35049

5.

P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108 (1992), no. 2, 247–262.  10.1007/bf02100605 MR1161092 P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108 (1992), no. 2, 247–262.  10.1007/bf02100605 MR1161092

6.

Y. Guo and R. Seiringer, On the mass concentration for Bose-Einstein condensates with attractive interactions, Lett. Math. Phys. 104 (2014), no. 2, 141–156.  10.1007/s11005-013-0667-9 1311.35241 Y. Guo and R. Seiringer, On the mass concentration for Bose-Einstein condensates with attractive interactions, Lett. Math. Phys. 104 (2014), no. 2, 141–156.  10.1007/s11005-013-0667-9 1311.35241

7.

Y. Guo, Z. Wang, X. Zeng and H.-S. Zhou, Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, arXiv:1502.01839.  1502.01839 Y. Guo, Z. Wang, X. Zeng and H.-S. Zhou, Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, arXiv:1502.01839.  1502.01839

8.

Y. Guo, X. Zeng and H.-S. Zhou, Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire.  10.1016/j.anihpc.2015.01.005 MR3489635 1341.35053 Y. Guo, X. Zeng and H.-S. Zhou, Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire.  10.1016/j.anihpc.2015.01.005 MR3489635 1341.35053

9.

X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mb{R}^3$, J. Differential Equations 252 (2012), no. 2, 1813–1834.  10.1016/j.jde.2011.08.035 X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mb{R}^3$, J. Differential Equations 252 (2012), no. 2, 1813–1834.  10.1016/j.jde.2011.08.035

10.

L. Jeanjean and T. Luo, Sharp nonexistence results of prescribed $L^2$-norm solutions for some class of Schrödinger-Poisson and quasi-linear equations, Z. Angew. Math. Phys. 64 (2013), no. 4, 937–954.  10.1007/s00033-012-0272-2 MR3085898 1294.35140 L. Jeanjean and T. Luo, Sharp nonexistence results of prescribed $L^2$-norm solutions for some class of Schrödinger-Poisson and quasi-linear equations, Z. Angew. Math. Phys. 64 (2013), no. 4, 937–954.  10.1007/s00033-012-0272-2 MR3085898 1294.35140

11.

L. Jeanjean, T. Luo and Z.-Q. Wang, Multiple normalized solutions for quasi-linear Schrödinger equations, J. Differential Equations 259 (2015), no. 8, 3894–3928.  10.1016/j.jde.2015.05.008 MR3369266 L. Jeanjean, T. Luo and Z.-Q. Wang, Multiple normalized solutions for quasi-linear Schrödinger equations, J. Differential Equations 259 (2015), no. 8, 3894–3928.  10.1016/j.jde.2015.05.008 MR3369266

12.

J. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $\mb{R}^{N}$, J. Math. Anal. Appl. 369 (2010), no. 2, 564–574.  10.1016/j.jmaa.2010.03.059 J. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $\mb{R}^{N}$, J. Math. Anal. Appl. 369 (2010), no. 2, 564–574.  10.1016/j.jmaa.2010.03.059

13.

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

14.

G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mb{R}^3$, J. Differential Equations 257 (2014), no. 2, 566–600.  10.1016/j.jde.2014.04.011 MR3200382 1290.35051 G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mb{R}^3$, J. Differential Equations 257 (2014), no. 2, 566–600.  10.1016/j.jde.2014.04.011 MR3200382 1290.35051

15.

J.-L. Lions, On some questions in boundary value problems of mathematical physics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), 284–346, North-Holland Math. Stud., 30, North-Holland, Amsterdam-New York, 1978.  10.1016/s0304-0208(08)70870-3 J.-L. Lions, On some questions in boundary value problems of mathematical physics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), 284–346, North-Holland Math. Stud., 30, North-Holland, Amsterdam-New York, 1978.  10.1016/s0304-0208(08)70870-3

16.

P.-L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109–145.  MR778970 0541.49009 10.1016/S0294-1449(16)30428-0 P.-L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109–145.  MR778970 0541.49009 10.1016/S0294-1449(16)30428-0

17.

––––, The concentration-compactness principle in the calculus of variations, The locally compact case, II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223–283.  MR778974 0704.49004 10.1016/S0294-1449(16)30422-X ––––, The concentration-compactness principle in the calculus of variations, The locally compact case, II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223–283.  MR778974 0704.49004 10.1016/S0294-1449(16)30422-X

18.

W. Liu and X. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations, J. Appl. Math. Comput. 39 (2012), no. 1-2, 473–487.  10.1007/s12190-012-0536-1 MR2914487 1295.35226 W. Liu and X. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations, J. Appl. Math. Comput. 39 (2012), no. 1-2, 473–487.  10.1007/s12190-012-0536-1 MR2914487 1295.35226

19.

S. I. Pohožaev, A certain class of quasilinear hyperbolic equations, Mat. Sb. (N.S.) 96(138) (1975), 152–168. S. I. Pohožaev, A certain class of quasilinear hyperbolic equations, Mat. Sb. (N.S.) 96(138) (1975), 152–168.

20.

J. Wang, L. Tian, J. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations 253 (2012), no. 7, 2314–2351.  10.1016/j.jde.2012.05.023 MR2946975 06071626 J. Wang, L. Tian, J. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations 253 (2012), no. 7, 2314–2351.  10.1016/j.jde.2012.05.023 MR2946975 06071626

21.

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), no. 4, 567–576.  10.1007/bf01208265 M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), no. 4, 567–576.  10.1007/bf01208265

22.

X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mb{R}^{N}$, Nonlinear Anal. Real World Appl. 12 (2011), no. 2, 1278–1287.  10.1016/j.nonrwa.2010.09.023 X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mb{R}^{N}$, Nonlinear Anal. Real World Appl. 12 (2011), no. 2, 1278–1287.  10.1016/j.nonrwa.2010.09.023

23.

H. Ye, The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Methods Appl. Sci. 38 (2015), no. 13, 2663–2679.  10.1002/mma.3247 1331.35134 H. Ye, The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Methods Appl. Sci. 38 (2015), no. 13, 2663–2679.  10.1002/mma.3247 1331.35134

24.

––––, The existence of normalized solutions for $L^2$-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys. 66 (2015), no. 4, 1483–1497.  10.1007/s00033-014-0474-x MR3377698 1322.35032 ––––, The existence of normalized solutions for $L^2$-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys. 66 (2015), no. 4, 1483–1497.  10.1007/s00033-014-0474-x MR3377698 1322.35032
Copyright © 2016 The Mathematical Society of the Republic of China
Yonglong Zeng and Kuisheng Chen "Remarks on Normalized Solutions for $L^2$-Critical Kirchhoff Problems," Taiwanese Journal of Mathematics 20(3), 617-627, (2016). https://doi.org/10.11650/tjm.20.2016.6548
Published: 2016
Vol.20 • No. 3 • 2016
Back to Top