Open Access
2015 ON THE COMPACTNESS OF COMMUTATORS FOR ROUGH MARCINKIEWICZ INTEGRAL OPERATORS
Suzhen Mao, Yoshihiro Sawano, Huoxiong Wu
Taiwanese J. Math. 19(6): 1777-1793 (2015). DOI: 10.11650/tjm.19.2015.5656

Abstract

Let $b \in \operatorname{BMO}(\mathbb{R}^n)$ and $\mathscr{M}_\Omega$ be the Marcinkiewicz integral operatorwith kernel $\frac{\Omega(x)}{|x|^{n-1}}$, where $\Omega$ is homogeneous of degree zero, integrable and has mean value zero on the unit sphere $S^{n-1}$. In this paper, by means of Fourier transform estimates and approximationto the operator $\mathscr{M}_\Omega$ with integral operators having smooth kernelswe show that if $b \in \operatorname{CMO}(\mathbb{R}^n)$ and $\Omega$ satisfies a certain weak size condition, then the commutator $\mathscr{M}_{\Omega,b} = [b, \mathscr{M}_\Omega]$ generated by $b$ and $\mathscr{M}_\Omega$ is a compact operator on $L^p(\mathbb{R}^n)$ for some $1\lt p\lt \infty$.

Citation

Download Citation

Suzhen Mao. Yoshihiro Sawano. Huoxiong Wu. "ON THE COMPACTNESS OF COMMUTATORS FOR ROUGH MARCINKIEWICZ INTEGRAL OPERATORS." Taiwanese J. Math. 19 (6) 1777 - 1793, 2015. https://doi.org/10.11650/tjm.19.2015.5656

Information

Published: 2015
First available in Project Euclid: 4 July 2017

zbMATH: 1357.42010
MathSciNet: MR3434277
Digital Object Identifier: 10.11650/tjm.19.2015.5656

Subjects:
Primary: 42B20
Secondary: 11L15 , 11P05

Keywords: approximation , commutators , compactness , Marcinkiewicz integral operators

Rights: Copyright © 2015 The Mathematical Society of the Republic of China

Vol.19 • No. 6 • 2015
Back to Top