Open Access
2014 UPPER BOUNDS FOR THE FIRST EIGENVALUE OF THE LAPLACE OPERATOR ON COMPLETE RIEMANNIAN MANIFOLDS
Yi Hsu, Chien-lun Lai
Taiwanese J. Math. 18(4): 1257-1265 (2014). DOI: 10.11650/tjm.18.2014.4018

Abstract

Let $M$ be a complete Riemannian manifold with infinite volume and $\Omega$ be a compact subdomain in $M.$ In this paper we obtain two upper bound estimates for the first eigenvalue of the Laplacian on the punctured manifold $M \setminus \Omega$ subject to volume growth and lower bound of Ricci curvature, respectively. The proof hinges on asymptotic behavior of solutions of second order differential equations, the max-min principle and Bishop volume comparison theorem.

Citation

Download Citation

Yi Hsu. Chien-lun Lai. "UPPER BOUNDS FOR THE FIRST EIGENVALUE OF THE LAPLACE OPERATOR ON COMPLETE RIEMANNIAN MANIFOLDS." Taiwanese J. Math. 18 (4) 1257 - 1265, 2014. https://doi.org/10.11650/tjm.18.2014.4018

Information

Published: 2014
First available in Project Euclid: 10 July 2017

zbMATH: 1357.58031
MathSciNet: MR3245441
Digital Object Identifier: 10.11650/tjm.18.2014.4018

Subjects:
Primary: 58J50
Secondary: 34E10

Keywords: complete Riemannian manifolds , first eigenvalue

Rights: Copyright © 2014 The Mathematical Society of the Republic of China

Vol.18 • No. 4 • 2014
Back to Top