Open Access
2014 INSERTION-OF-FACTORS-PROPERTY SKEWED BY RING ENDOMORPHISMS
Nam Kyun Kim, Tai Keun Kwak, Yang Lee
Taiwanese J. Math. 18(3): 849-869 (2014). DOI: 10.11650/tjm.18.2014.3325

Abstract

In this paper, we investigate the Insertion-of-Factors-Property (simply IFP), (quasi-)Baer property, and Armendariz property on skew power series (polynomial) rings and introduce the concept of (strongly) $\sigma$-skew IFP and extend many of related basic results to the wider classes. When a ring $R$ has $\sigma$-skew IFP and $\sigma$ is a monomorphism of $R$ we prove that $R$ is Baer if and only if $R$ is quasi-Baer if and only if $R[[x;\sigma]]$ ($R[x;\sigma]$) is Baer if and only if $R[[x;\sigma]]$ ($R[x;\sigma]$) is quasi-Baer. We also prove that if $R$ is a skew power-serieswise $\sigma$-Armendariz ring then $R$ has strongly $\sigma$-skew IFP and $R[[x;\sigma]]$ has IFP. Several known results follow as consequences of our results. In particular, we provide a $\sigma$-skew power-serieswise Armendariz ring but does not have IFP.

Citation

Download Citation

Nam Kyun Kim. Tai Keun Kwak. Yang Lee. "INSERTION-OF-FACTORS-PROPERTY SKEWED BY RING ENDOMORPHISMS." Taiwanese J. Math. 18 (3) 849 - 869, 2014. https://doi.org/10.11650/tjm.18.2014.3325

Information

Published: 2014
First available in Project Euclid: 10 July 2017

MathSciNet: MR3213391
zbMATH: 1357.16042
Digital Object Identifier: 10.11650/tjm.18.2014.3325

Subjects:
Primary: 16S36 , 16U80 , 16W20

Keywords: (quasi-)Baer property , Armendariz property , insertion-of-Factors-Property , Skew power series ring

Rights: Copyright © 2014 The Mathematical Society of the Republic of China

Vol.18 • No. 3 • 2014
Back to Top