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INSERTION-OF-FACTORS-PROPERTY SKEWED BY RING
ENDOMORPHISMS

Nam Kyun Kim, Tai Keun Kwak* and Yang Lee

Abstract. In this paper, we investigate the Insertion-of-Factors-Property (sim-
ply IFP), (quasi-)Baer property, and Armendariz property on skew power series
(polynomial) rings and introduce the concept of (strongly) σ-skew IFP and extend
many of related basic results to the wider classes. When a ring R has σ-skew
IFP and σ is a monomorphism of R we prove that R is Baer if and only if R
is quasi-Baer if and only if R[[x; σ]] (R[x; σ]) is Baer if and only if R[[x; σ]]
(R[x; σ]) is quasi-Baer. We also prove that if R is a skew power-serieswise σ-
Armendariz ring then R has strongly σ-skew IFP and R[[x; σ]] has IFP. Several
known results follow as consequences of our results. In particular, we provide a
σ-skew power-serieswise Armendariz ring but does not have IFP.

1. INTRODUCTION

Throughout this paper, all rings are associative with identity. We use R[x] (R[[x]])
to denote the polynomial ring (the power series ring) with an indeterminate x over R.
For any polynomial f(x) in R[x] (R[[x]]), let Cf(x) denote the set of all coefficients
of f(x). Let Z and Zn denote the ring of integers and the ring of integers modulo n,
respectively.

Due to Bell [3], a ring R is called to satisfy the Insertion-of-Factors-Property
(simply, IFP) if ab = 0 implies aRb = 0 for a, b ∈ R. Narbonne [20] and Shin [24]
used the terms semicommutative and SI for the IFP, respectively. Commutative rings
clearly have IFP, and any reduced ring (i.e., a ring without nonzero nilpotent elements)
has IFP by a simple computation. There exist many non-reduced commutative rings
(e.g., Znl for n, l ≥ 2), and many noncommutative reduced rings (e.g., direct products
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of noncommutative domains). A ring is called Abelian if every idempotent is central.
Rings that have IFP are Abelian by a simple computation.

Following Başer et al. [2, Definition 2.1], an endomorphism σ of a ring R is called
to have skew IFP if whenever ab = 0 for a, b ∈ R, aRσ(b) = 0, and a ring R is called
to have σ-skew IFP if there exists an endomorphism σ having skew IFP of R. A ring
R has σ-skew IFP if and only if for a, b ∈ R, ab = 0 implies aRσn(b) = 0 for all
n ≥ 1 by [2, Remark 2.2]. According to Krempa [18], an endomorphism σ of a ring
R is called rigid if aσ(a) = 0 implies a = 0 for a ∈ R, and a ring R is called σ-rigid
if there exists a rigid endomorphism σ of R. Note that any rigid endomorphism of a
ring is a monomorphism and σ-rigid rings are reduced by [8, Proposition 5]. Notice
that a ring R is σ-rigid if and only if R is reduced and has σ-skew IFP and σ is a
monomorphism by [2, Theorem 2.4].

Rege and Chhawchharia [23] called a ring R Armendariz if whenever any polyno-
mials f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0, ab = 0 for all a ∈ Cf(x) and b ∈ Cg(x).
This nomenclature was used by them since it was Armendariz [1, Lemma 1] who ini-
tially showed that a reduced ring always satisfies this condition. For a semiprime right
Goldie ring R, R is Armendariz if and only if R has IFP. However, the IFP ring prop-
erty and the Armendariz ring property don’t imply each other by [23, Example 3.2] and
[13, Example 14]. On the other hand, a ring R is called power-serieswise Armendariz
[15] if ab = 0 for all a ∈ Cf(x) and b ∈ Cg(x) whenever f(x), g(x) ∈ R[[x]] satisfy
f(x)g(x) = 0. Every power-serieswise Armendariz ring is obviously Armendariz by
definition, but the converse does not hold by [15, Example 2.1]. Reduced rings are
power-serieswise Armendariz by [15, Lemma 2.3(1)].

For a ring R with an endomorphism σ, a skew polynomial ring (also called an
Ore extension of endomorphism type) R[x; σ] of R is the ring obtained by giving the
polynomial ring over R with the new multiplication xr = σ(r)x for all r ∈ R, while
R[[x; σ]] is called a skew power series ring. Note that σ(1) = 1 for any skew power
series (skew polynomial) ring R[[x; σ]](R[x;σ]), since 1xn = xn = x1xn−1 = σ(1)xn

for any n ≥ 1 where 1 is the identity of R.
Following [2], a ring R is called skew power-serieswise σ-Armendariz if aibj = 0

for all i and j whenever p(x)q(x) = 0 for p(x) =
∑∞

i=0 aix
i, q(x) =

∑∞
j=0 bjx

j ∈
R[[x; σ]]. Skew power-serieswiseσ-Armendariz rings are skew Armendariz in the sense
of [21], and σ-rigid rings are skew power-serieswise σ-Armendariz by [8, Proposition
17], but there exist many examples of non-reduced (and hence non-σ-rigid) skew power-
serieswise σ-Armendariz rings as we can see in [22, Section 4]. It is obvious that
skew power-serieswise σ-Armendariz property of a ring is inherited to its subrings,
and that every skew power-serieswise σ-Armendariz ring has IFP. If R is a skew
power-serieswise σ-Armendariz ring, then σ is clearly a monomorphism by help of
[12, Proposition 1.3]. Hong et al. [11] called a ring R σ-skew power-serieswise
Armendariz if whenever p(x) =

∑∞
i=0 aix

i, q(x) =
∑∞

j=0 bjx
j in R[[x; σ]] satisfy
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p(x)q(x) = 0, then aiσ
i(bj) = 0 for all i, j. It is shown that every σ-skew power-

serieswise Armendariz ring has σ-skew IFP by [11, Lemma 3.1(2)].
Based on the above, in this paper, we investigate the Insertion-of-Factors-Property

skewed by ring endomorphisms, (quasi-)Baer property, and Armendariz property on
skew power series (polynomial) rings and so several known results follow as conse-
quences of our results. We change over from “a σ-semicommutative ring” and “a skew
power series Armendariz ring with the endomorphism σ” (in [2]) to “a ring has σ-skew
IFP” and “a skew power-serieswise σ-Armendariz ring” respectively, so as to cohere
with other related definitions.

From now on, σ and idR denote a nonzero endomorphism and the identity endo-
morphism of the ring R respectively, unless specified otherwise.

2. SKEW POWER SERIES RINGS OVER BAER AND P.P.-RINGS

In this section, we first show that (quasi-)Baer property can be extended from R
to R[[x; σ]] (R[x; σ]), and then define the concept of strongly σ-skew IFP and extend
many of related basic results to the wider classes.

A ring R is called Baer by Kaplansky [14] if the right annihilator of every nonempty
subset of R is generated by an idempotent. An example of Cohn shows that the n by
n full matrix ring Matn(Z) is Baer but Matn(Z)[x] and Matn(Z)[[x]] are not (see
[1]). For an Armendariz ring R, R is Baer if and only if R[x] is Baer ([1] and [16]).

According to Clark [4], a ring R is called quasi-Baer if the right annihilator of each
right ideal of R is generated (as a right ideal) by an idempotent. It is well-known that
these two concepts are left-right symmetric. A ring R is called a right (left) p.p.-ring
if the right (left) annihilator of an element of R is generated by an idempotent. R is
called a p.p.-ring if it is both a left and right p.p.-ring.

Lemma 2.1. Let a ring R have σ-skew IFP. Then we have the following results.
(1) σ(1) = σn(1) for all n ≥ 2.
(2) Let e2 = e ∈ R. Then σ(e) = eσ(e) = eσ(1) = eσn(e) for all n ≥ 2.
(3) If σ is a monomorphism, then σ(1) = 1, and hence σ(e) = e for any e2 = e ∈

R.
(4) If σ is an epimorphism, then σ(e) = e for every e2 = e ∈ R.

Proof. (1) From σ(1)(1−σ(1)) = 0, we get 0 = σ(1)σ(1−σ(1)) = σ(1)(σ(1)−
σ2(1)) = σ(1)− σ2(1) since R has σ-skew IFP. This yields σ(1) = σ2(1), so σ(1) =
σ2(1) = σ(σ(1)) = σ(σ2(1)) = σ3(1) = · · · = σn(1) for all n ≥ 2.

(2) Let e2 = e ∈ R and n ≥ 2. From e(1 − e) = 0 and (1 − e)e = 0, we get
0 = eσ(1−e) = e(σ(1)−σ(e)) = eσ(1)−eσ(e) and 0 = (1−e)σ(e) = σ(e)−eσ(e)
since R is σ-skew IFP. So σ(e) = eσ(e) = eσ(1). Moreover 0 = eσn(1 − e) =
e(σn(1)− σn(e)) = eσ(1)− eσn(e) (hence σ(e) = eσ(1) = eσn(e)) by (1).
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(3) From (1), we get σ(1−σ(1)) = 0 and so σ(1) = 1 since σ is a monomorphism.
The fact that σ(e) = e comes from (2).

(4) This follows from (2), since any epimorphism σ always satisfies σ(1) = 1.

Observe that if a ring R has σ-skew IFP and σ is a monomorphism of R, then
σ(e) = e for e2 = e ∈ R and the set of all idempotents in R[[x; σ]] coincides with
the set of all idempotents of R and R[[x; σ]] is Abelian by Lemma 2.1(3) and [2,
Proposition 2.6 and Proposition 3.9], and hence ae = 0 for a, e2 = e ∈ R implies that
a(xsRxt)e = 0 for any s, t ≥ 0. We will use these freely in the proofs of the next
three results.

For a nonempty subset A of a ring R, we write rR(A) = {s ∈ R | as = 0 for any
a ∈ A} which is called the right annihilator of A in R. Left annihilators are denoted
similarly, written by �R(A).

Theorem 2.2. Let a ring R have σ-skew IFP and σ a monomorphism of R. Then
the following conditions are equivalent:

(1) R is Baer.
(2) R is quasi-Baer.
(3) R[[x; σ]] (R[x; σ]) is quasi-Baer.
(4) R[[x; σ]] (R[x; σ]) is Baer.

Proof. We only show that (2)⇒(1), (1)⇒(4), and (3)⇒(2).
(2)⇒(1): Let A be a nonempty subset of R. If R is quasi-Baer, then rR(AR) = eR

and so eR ⊆ rR(A). Now, let c ∈ rR(A). Then Ac = 0. Since R is σ-skew IFP,
ARσ(c) = 0 and hence σ(c) ∈ rR(AR) = eR. But σ(c) = eσ(c) = σ(ec), and so
c = ec ∈ eR since σ is a monomorphism. This yields rR(A) = eR and therefore R is
Baer.

(1)⇒(4): Suppose that e and f are idempotents in R such that �R(A) = Re and
�R(A1) = Rf for some subset A of R, where A1 = {σ(a) | a ∈ A}, i.e., A1 = σ(A).
By hypothesis, eA = 0 implies eA1 = 0, so e ∈ Rf and e = ef = fe. Also,
0 = fA1 = σ(f)σ(A) = σ(fA), and so fA = 0 since σ is a monomorphism. This
yields f ∈ �R(A) and f = fe = ef . Thus e = f and so

�R(A) = Re = Rf = �R(A1) = �R(σ(A)),

entailing that �R(A) = Re = �R(σn(A)) for all n ≥ 1.
Let R be a Baer ring. Let T = R[[x; σ]], S be a subset of T , and I = ST . Note

�T (S) = �T (I). If I = 0 then we are done. So assume I �= 0 and

I0 = {a ∈ R | a is the nonzero coefficient of the term of lowest degree of p(x)

when 0 �= p(x) ∈ I}.
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Since R is Baer, �R(I0) = Re for some e2 = e ∈ R. Then �R(I0) = �R(In) for all
n ≥ 1 by the result above, where In = σn(I0). Let q(x) =

∑∞
i=0 aix

i ∈ I . Then ea0 =
a0e = 0 whether a0 = 0 or not. Note eq(x) =

∑∞
i=0 eaix

i = ea1x + ea2x
2 + · · · =

q(x)e ∈ I . If ea1 = a1e �= 0 then ea1 ∈ I0 and this yields ea1 = e(ea1) = e(a1e) = 0,
a contradiction. So ea1 = 0, and we obtain inductively that ea2 = ea3 = · · · = 0,
entailing eq(x) = 0. This yields e ∈ �T (I) and Te ⊆ �T (I) = �T (S).

Conversely let r(x) =
∑∞

i=0 bix
i ∈ �T (I) and we shall show r(x) = r(x)e. Let

0 �= p(x) = c0x
j + c1x

j+1 + c2x
j+2 + · · · be any in I with c0 �= 0. Note that

0 �= σn(c0) is any in In = σn(I0). Then r(x)p(x) = 0 and so b0c0 = 0, entailing
b0 ∈ �R(I0) = Re ⊆ �T (I). Thus b0 = b0e and b0p(x) = b0ep(x) = 0, and so
b0ck = 0 for all k = 1, 2, . . .. Then we have (b1x + b2x

2 + · · ·+ · · · )p(x) = 0 and
so b1σ(c0) = 0. This yields b1 ∈ �R(I1) = �R(I0) = Re ⊆ �T (I), so b1 = b1e. Then
(b1x)p(x) = (b1ex)p(x) = (b1x)ep(x) = 0, and so b1σ(ck) = 0 for all k = 1, 2, . . ..
Consequently we have (b2x

2 + b3x
3 + · · · )p(x) = 0, entailing b2σ

2(c0) = 0. This
also yields b2 ∈ �R(I2) = �R(I0) = Re ⊆ �T (I), so b2 = b2e. From (b2x

2)p(x) =
(b2ex

2)p(x) = (b2x
2)ep(x) = 0, we also get b2σ

2(ck) = 0 for all k = 1, 2, . . ..
Proceeding in this manner, we inductively obtain bi = bie for all i ≥ 0, and so
r(x) = r(x)e ∈ Te. Hence �T (I) ⊆ Te and thus �T (I) = Te.

(3)⇒(2): Suppose that R[[x; σ]] is quasi-Baer. Let I be a right ideal of R. Then
by hypothesis, rR[[x;σ]](I [[x; σ]]) = eR[[x; σ]] for some e2 = e ∈ R. Thus Ie = 0 and
so eR ⊆ rR(I). To prove the reverse inclusion, let a ∈ rR(I). Then IRa = 0 and
IRxta = 0 for any integer t ≥ 1 because R has σ-skew IFP. So IR[[x; σ]]a = 0, and
hence a ∈ rR[[x;σ]](I [[x; σ]]) = eR[[x; σ]]. Therefore a ∈ eR, proving that rR(I) ⊆ eR.

The preceding proof is also available to the skew polynomial ring case.

Proposition 2.3. Let a ring R have σ-skew IFP and σ a monomorphism of R. If
R[[x; σ]] (R[x; σ]) is a right p.p.-ring then R is a right p.p.-ring.

Proof. Suppose that R[[x; σ]] is right p.p.. Let a ∈ R. Then rR[[x;σ]](a) =
eR[[x; σ]] for some e2 = e ∈ R by hypothesis. Thus eR ⊆ rR(a). By the almost
same argument as in the proof (2)⇒(1) of Theorem 2.2, we obtain rR(a) ⊆ eR, and
consequently rR(a) = eR.

The preceding proof is also available to the skew polynomial ring case.

Notice that the converse of Proposition 2.3 does not hold by help of [8, p.225].
However, we have the following result.

Proposition 2.4. Let a ring R have σ-skew IFP and σ a monomorphism of R.
Then the following conditions are equivalent:

(1) R is a right p.p.-ring.
(2) For any f(x) =

∑n
i=0 aixi ∈ R[[x; σ]], rR[[x;σ]](f(x)) = eR[[x; σ]] for some

e2 = e ∈ R[[x; σ]].
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(3) For any f(x) =
∑n

i=0 aix
i ∈ R[[x; σ]], rR[[x;σ]](f(x)R[[x; σ]]) = eR[[x; σ]]

for some e2 = e ∈ R[[x; σ]].

Proof. (1)⇒(2): Assume that R is right p.p.. We first note that R is σ-rigid.
For, if aσ(a) = 0 for a ∈ R then σ(a)σ(a) = 0 and so a = 0 since R is reduced.
Let f(x) =

∑n
i=0 aix

i ∈ R[[x; σ]]. By hypothesis, rR(ai) = eiR for each i and
some e2

i = ei ∈ R. Putting e = eie2 · · ·en then e2 = e ∈ R. Thus aie = 0
for any 0 ≤ i ≤ n. Then ai(xs)e = 0 for any s ≥ 0 and i, and so f(x)e = 0.
Thus eR[[x; σ]] ⊆ rR[[x;σ]](f(x)). For the reverse inclusion, let q(x) =

∑∞
j=0 bjx

j ∈
rR[[x;σ]](f(x)). Then f(x)q(x) = 0 and so aibj = 0 for all i and j by [8, Proposition
17], since R is σ-rigid. This implies bj ∈ rR(aiR) = eiR, and thus bj = eibj for
all j and i = 0, 1, . . . , n. Consequently, we get bj = ebj for all j, proving that
q(x) = eq(x) ∈ eR[[x; σ]].

(2)⇒(3): Assume (2). Let f(x) =
∑n

i=0 aix
i ∈ R[[x; σ]]. Then rR[[x;σ]](f(x)

R[[x; σ]]) ⊆ rR[[x;σ]](f(x)) = eR[[x; σ]] for some e2 = e ∈ R. Moreover, we
get f(x)e = 0 and so ai(xsRxt)e = 0 for any s, t ≥ 0 and all i. This yields
f(x)R[[x; σ]]e = 0 and therefore eR[[x; σ]] ⊆ rR[[x;σ]](aR[[x; σ]]).

(3)⇒(1): Assume (3). Let a ∈ R. We first show that rR(aR) = eR for some
e2 = e ∈ R. By assumption, we have rR[[x;σ]](aR[[x; σ]]) = eR[[x; σ]] for some
e2 = e ∈ R. Then we get aRe = 0, and so eR ⊆ rR(aR). If b ∈ rR(aR), then
aRb = 0 and so aR[[x; σ]]b = 0 since R has σ-skew IFP. Thus b ∈ eR[[x; σ]] and
so b ∈ eR, showing that rR(aR) = eR for any a ∈ R. From this result, we have
eR ⊆ rR(a). We now let b ∈ rR(a). Since R is σ-skew IFP, aRσ(b) = 0 and hence
σ(b) ∈ rR(aR) = eR. By the same argument as in the proof (2)⇒(1) of Theorem 2.2,
we have b ∈ eR and thus R is right p.p..

An endomorphism σ of a ring R is called to have strongly skew IFP if aRσn(b) = 0
for all n ≥ 0 whenever ab = 0 for a, b ∈ R, and a ring R is called to have strongly
σ-skew IFP if there exists an endomorphism σ having strongly skew IFP of R. Every
domain with any endomorphism σ clearly has strongly σ-skew IFP, and every ring
having strongly σ-skew IFP has σ-skew IFP but not conversely by [2, Example 2.7].
It can be easily checked that a ring R has strongly σ-skew IFP when R[[x; σ]] has IFP.
However, there exists a ring R having IFP with an endomorphism σ which does not
have strongly σ-skew IFP. For example, the ring R = D ⊕ D with σ((a, b)) = (b, a),
where D is any reduced ring.

Lemma 2.5. Let R be a ring with an endomorphism σ. Then the following con-
ditions are equivalent:

(1) R has strongly σ-skew IFP.
(2) aR[[x; σ]]b = 0 whenever ab = 0 for a, b ∈ R.
(3) aR[x; σ]b = 0 whenever ab = 0 for a, b ∈ R.
(4) R has IFP and σ-skew IFP.
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Proof. It suffices to show (1)⇒(2). Assume (1). Let ab = 0 for a, b ∈ R. Then
aRσn(b) = 0 and so a(Rxn)b = 0 for all n ≥ 0. This yields aR[[x; σ]]b = 0.

For an algebra R (with or without identity) over a nonzero commutative ring S, the
Dorroh extension of R by S is the ring D = R×S with operations (r1, s1)+(r2, s2) =
(r1 + r2, s1 + s2) and (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2), where ri ∈ R and
si ∈ S. We only consider the case of with identity in this note. For an S-endomorphism
σ of R and the Dorroh extension D of R by S, the nonzero map σ̄ : D → D defined
by σ̄(r, s) = (σ(r), s) is an S-algebra homomorphism.

Proposition 2.6. Let S be a domain and σ an S-endomorphism of a ring R with
σ(1) = 1. Then R has (strongly) σ-skew IFP if and only if the Dorroh extension D of
R by S has (strongly) σ̄-skew IFP.

Proof. It is enough to show the necessity. Note that s ∈ S is identified with
s1 ∈ R and so R = {r + s | (r, s) ∈ D}. Suppose that R has strongly σ-skew IFP.
Let (r1, s1), (r2, s2) ∈ D with (r1, s1)(r2, s2) = 0. Then r1r2 + s1r2 + s2r1 = 0
and s1s2 = 0. Since S is a domain, s1 = 0 or s2 = 0. If s1 = 0, then 0 =
r1r2 + s2r1 = r1(r2 + s2). Since R has strongly σ-skew IFP, 0 = r1aσn(r2 + s21) =
r1aσn(r2) + r1as2 for any a ∈ R and every n ≥ 0. For any (r, s) ∈ D and every
n ≥ 0, (r1, 0)(r, s)σ̄n((r2, s2)) = (r1rσ

n(r2) + r1(r + s)s2, 0) = 0. If s2 = 0, then
we similarly get r1aσn(r2) + s1aσn(r2) = 0 for any a ∈ R and every n ≥ 0. For
any (r, s) ∈ D and every n ≥ 0, (r1, s1)(r, s)σ̄n((r2, 0)) = (r1(r+ s)σn(r2)+ s1(r +
s)σn(r2), 0) = 0. Consequently, D has strongly σ̄-skew IFP.

Proposition 2.7. Let R be an Armendariz ring with an endomorphism σ. Then
R has (strongly) σ-skew IFP if and only if R[x] has (strongly) σ̄-skew IFP, where
σ̄(

∑m
i=0 aix

i) =
∑m

i=0 σ(ai)xi.

Proof. It suffices to show the necessity. Assume that R has strongly σ-skew IFP.
Let f(x), g(x) ∈ R[x] with f(x)g(x) = 0. Since R is Armendariz and has strongly
σ-skew IFP, we get aRσn(b) = 0 for all a ∈ Cf(x), b ∈ Cg(x) and every n ≥ 0, and
so f(x)R[x]σ̄n(g(x)) = 0. Therefore R[x] has strongly σ̄-skew IFP.

The following asserts that the condition “R is an Armendariz ring” in Proposition
2.7 is not superfluous.

Example 2.8. We apply the ring construction and argument in [17, Example 2.1].
Consider the free algebra A = Z2〈a0, a1, a2, b0, b1, b2, c〉 with noncommuting indeter-
minates a0, a1, a2, b0, b1, b2, c over Z2. Define an automorphism δ of A by

a0, a1, a2, b0, b1, b2, c �→ b0, b1, b2, a0, a1, a2, c,
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respectively. Let B be the set of all polynomials with zero constant terms in A and
consider the ideal I of A generated by

a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2, a0rb0, a2rb2,

b0a0, b0a1 + b1a0, b0a2 + b1a1 + b2a0, b1a2 + b2a1, b2a2, b0ra0, b2ra2,

(a0 + a1 + a2)r(b0 + b1 + b2), (b0 + b1 + b2)r(a0 + a1 + a2),
a0a0, a2a2, a0ra0, a2ra2, b0b0, b2b2, b0rb0, b2rb2, r1r2r3r4,

a0a1 + a1a0, a0a2 + a1a1 + a2a0, a1a2 + a2a1,

b0b1 + b1b0, b0b2 + b1b1 + b2b0, b1b2 + b2b1,

(a0 + a1 + a2)r(a0 + a1 + a2), (b0 + b1 + b2)r(b0 + b1 + b2),

where r, r1, r2, r3, r4 ∈ B. Then clearly B4 ⊆ I . Set R = A/I . Since δ(I) ⊆ I ,
we can obtain an automorphism σ of R by defining σ(s + I) = δ(s) + I for s ∈ A.
We identify every element of A with its image in R for simplicity. Observe that
(a0+a1x

2+a2x
4)(b0+b1x

2+b2x
4) = 0 for a0+a1x

2+a2x
4, b0+b1x

2+b2x
4 ∈ R[x],

but (a0+a1x
2+a2x

4)cσ̄(b0+b1x
2+b2x

4) = (a0+a1x
2+a2x

4)c(a0+a1x
2+a2x

4) �= 0
since a0ca1 + a1ca0 �= 0. Thus R[x] does not have σ̄-skew IFP. Moreover, R is not
Armendariz. In fact, a0b1 �= 0 with (a0 + a1x

2 + a2x
4)(b0 + b1x

2 + b2x
4) = 0.

Next we show that R has strongly σ-skew IFP. A monomial usually means a
product of the indeterminates a0, a1, a2, b0, b1, b2, c, and a monomial of degree n means
a product of exactly n number of indeterminates. Let Hn be the set of all linear
combinations of monomials of degree n over Z2. Notice that Hn is finite for any n
and that the ideal I of R is homogeneous (i.e., if

∑s
i=1 ri ∈ I with ri ∈ Hi then every

ri is in I).

Claim 1. If f1g1 ∈ I for f1, g1 ∈ H1 then f1Bσn(g1) ⊆ I for all n ≥ 0.

Proof. Suppose that f1g1 ∈ I for f1, g1 ∈ H1. Then, by the definition of I , we
have only the following cases: (f1 = a0, g1 = b0), (f1 = a2, g1 = b2), (f1 = a0, g1 =
a0), (f1 = a2, g1 = a2), (f1 = b0, g1 = a0), (f1 = b2, g1 = a2), (f1 = b0, g1 =
b0), (f1 = b2, g1 = b2), (f1 = a0 +a1 +a2, g1 = b0 +b1 +b2), (f1 = b0 +b1 +b2, g1 =
a0+a1+a2), (f1 = a0+a1+a2, g1 = a0+a1+a2), (f1 = b0+b1+b2, g1 = b0+b1+b2).
So we obtain Claim 1, using the definition of I again.

Claim 2. If fg ∈ I for f, g ∈ B then frσn(g) ∈ I for all r ∈ B and n ≥ 0.

Proof. Let f = f1 +f2 +f3 +f4, g = g1 + g2 + g3 + g4 and r = r1 + r2 + r3 + r4,
where f1, g1, r1 ∈ H1, f2, g2, r2 ∈ H2, f3, g3, r3 ∈ H3, and f4, g4, r4 ∈ I . Note that
Hi ⊆ I for i ≥ 4. So frσn(g) = f1r1σ

n(g1)+ h for some h ∈ I . But fg ∈ I implies
f1g1 ∈ I since I is homogeneous; hence f1r1σ

n(g1) ∈ I by Claim 1. Consequently
frσn(g) ∈ I .

Now let yz ∈ I for y, z ∈ A. Write y = α + y′, z = β + z′ for some α, β ∈ Z2
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and some y′, z′ ∈ B. So αβ + αz′ + y′β + y′z′ = yz ∈ I ; hence α = 0 or β = 0.
Assume α = 0. Then y′β + y′z′ ∈ I . If β = 1 then y′ ∈ I because I is homogeneous;
hence yrσn(z) = y′rσn(z) ∈ I for all r ∈ A. If β = 0 then y′z′ ∈ I and so
yrσn(z) = y′rσn(z′) ∈ I for all r ∈ A by Claim 2. The proof of the case of β = 0 is
similar. Therefore R has strongly σ-skew IFP.

3. THE ARMENDARIZ PROPERTY ON SKEW POWER SERIES RINGS

In this section, we study the Armendariz property on skew power series rings
relating the skew IFP property, and investigate their properties.

Note that every σ-skew power-serieswise Armendariz ring has σ-skew IFP by [11,
Lemma 3.1(2)], but the converse is not true in general by [11, Example 3.3].

We first provide an example of a ring that has strongly σ-skew IFP and it is not
σ-skew power-serieswise Armendariz as follows.

Given a ring R and an (R, R)-bimodule M , the trivial extension of R by M is
the ring T (R, M) = R ⊕ M with the usual addition and the following multiplication:
(r1, m1)(r2, m2) = (r1r2, r1m2 +m1r2). This is isomorphic to the ring of all matrices(

r m

0 r

)
, where r ∈ R and m ∈ M and the usual matrix operations are used.

Example 3.1. Consider the trivial extension R = T (Z4, Z4) of Z4. Let σ : R → R

be an endomorphism defined by σ((a, b)) = (a,−b). Note that σ is an automorphism.
Clearly, R is not reduced and hence R is not σ-rigid. Moreover, R is not σ-skew power-
serieswise Armendariz: For, ((2, 0)+ (2, 1)x)2 = 0 ∈ R[[x; σ]], but (2, 0)(2, 1) �= 0.

Now, we show that R has strongly σ-skew IFP. Let AB = 0 for A = (a, b), B =
(c, d) ∈ R. Then ac = 0 and ad + bc = 0. From ac = 0, we have three cases of (i)
a = 0, (ii) c = 0, or (iii) a = 2 and c = 2. For any (h, k) ∈ R, (a, b)(h, k)σ((c, d)) =
(ahc, ah(−d) + akc + bhc). If a = 0 then bc = 0 and so bhc = 0, entailing that
ARσ(B) = 0. If c = 0 then ad = 0 and so ah(−d) = 0, proving that ARσ(B) = 0.
Finally, assume that a = 2 and c = 2. Then we also have ARσ(B) = 0 from 2b = 2d.

Consequently, R has σ-skew IFP. By the similar computation to the above, we can
easily show that R has IFP. Therefore R has strongly σ-skew IFP.

The following example shows that there exists a σ-skew power-serieswise Armen-
dariz ring that does not have IFP (hence does not have strongly σ-skew IFP).

Example 3.2. Let S be a reduced ring and consider the subring

R =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

a b c d

0 a e f
0 0 a g

0 0 0 a

⎞
⎟⎟⎠ | a, b, c, d, e, f, g ∈ S

⎫⎪⎪⎬
⎪⎪⎭
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of the 4 by 4 full matrix ring over S. Define an endomorphism σ of R by

σ

⎛
⎜⎜⎝

⎛
⎜⎜⎝

a b c d

0 a e f
0 0 a g
0 0 0 a

⎞
⎟⎟⎠

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a b c 0
0 a e 0
0 0 a 0
0 0 0 a

⎞
⎟⎟⎠ .

Then σ(A) = σi(A) for all A ∈ R and i ≥ 2. Suppose that p(x)q(x) = 0 for
p(x) =

∑∞
i=0 Aix

i, q(x) =
∑∞

j=0 Bjx
j ∈ R[[x; σ]], where

Ai =

⎛
⎜⎜⎝

ai bi ci di

0 ai ei fi

0 0 ai gi

0 0 0 ai

⎞
⎟⎟⎠ and Bj =

⎛
⎜⎜⎝

kj rj sj tj
0 kj uj vj

0 0 kj wj

0 0 0 kj

⎞
⎟⎟⎠

for each i and j. Set p′(x) =
∑∞

i=0 A′
ix

i, q′(x) =
∑∞

j=0 B′
jx

j ∈ R[[x; σ]] where
A′

i = σ(Ai) and B′
j = σ(Bj) for each i and j. Note that for

A =

⎛
⎜⎜⎝

a b c d

0 a e f
0 0 a g

0 0 0 a

⎞
⎟⎟⎠ ∈ R,

letting A =
(

A11 A12

0 A22

)
with A11 =

⎛
⎝a b c

0 a e

0 0 a

⎞
⎠, A12 =

⎛
⎝d

f

g

⎞
⎠, and A22 =

(
a
)
, we

have

σ(R) ∼=
⎧⎨
⎩

⎛
⎝ a b c

0 a d
0 0 a

⎞
⎠ | a, b, c, d ∈ S

⎫⎬
⎭

via σ(A) �→ A11. Hence p′(x)q′(x) = 0 since we get

(1)
0 = σ(A0)σ(Bn) + σ(A1)σ(Bn−1) + σ(A2)σ(Bn−2)

+ · · ·+ σ(An−2)σ(B2) + σ(An−1)σ(B1) + σ(An)σ(B0)

from the equalities

(2)

0 = A0Bn + A1σ(Bn−1) + A2σ
2(Bn−2)

+ · · ·+ An−2σ
n−2(B2) + An−1σ

n−1(B1) + Anσn(B0)

= A0Bn + A1σ(Bn−1) + A2σ(Bn−2)

+ · · ·+ An−2σ(B2) + An−1σ(B1) + Anσ(B0)



Insertion-of-Factors-Property Skewed by Ring Endomorphisms 859

where n ≥ 0. Here we also have p′(x)q′(x) = 0 as a product of p′(x) and q′(x) in
σ(R)[[x]]. But since σ(R) is power-serieswise Armendariz by applying [15, Corollary
3.6(2)], we get

A′
iB

′
j = 0 for all i, j.(3)

Further, by the proof of [17, Proposition 1.2], we have that

aikj = bikj = cikj = eikj = 0

for all i, j from the equality (3). We will use this freely.
From the equality (2), we also have

a0tn + b0vn + c0wn + d0kn + d1kn−1 + · · ·+ dnk0 = 0(4)

in the (1, 4)-entry of the coefficient of degree n of p(x)q(x) = 0, where n ≥ 0.
Multiplying the equality (4) by kl on the right side, we obtain

d0knkl + d1kn−1kl + · · ·+ dnk0kl = 0(5)

where l is any nonnegative integer. Let

α(x) =
∞∑
i=0

dix
i, β(x) =

∞∑
j=0

kjklx
j

in S[[x]]. Then α(x)β(x) = 0, so we have dikjkl = 0 for all i, j from the equality (5)
since S is reduced (hence power-serieswise Armendariz). Especially we get dikjkj = 0
if we let l = j, so

dikj = 0 for all i, j.(6)

Through similar computations, we also obtain

fikj = 0 and gikj = 0 for all i, j(7)

in the (2, 4), (3, 4)-entries of the coefficients of p(x)q(x) = 0.
Now from the results (3), (6), and (7), we can have

Aiσ
i(Bj) = 0 for all i ≥ 1 and j ≥ 0.

This yields that A0Bj = 0 for all j ≥ 0. Consequently Aiσ
i(Bj) = 0 for all i, j, and

thus R is σ-skew power-serieswise Armendariz. However R does not have IFP by [17,
Example 1.3].

Based on the preceding example, we have the following.
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Proposition 3.3. Let R be a semiprime ring and σ a monomorphism of R. If R

has σ-skew IFP, then R has IFP (hence strongly σ-skew IFP).

Proof. Let R have σ-skew IFP. Suppose ab = 0 for a, b ∈ R. Then aRσ(b) =
0. But since R is semiprime, we get σ(b)Ra = 0. Thus σ(b)Rσ(a) = 0, so the
semiprimeness of R implies σ(a)Rσ(b) = 0. Since σ is a monomorphism, we get
aRb = 0 from σ(aRb) ⊆ σ(a)Rσ(b).

As a corollary, we generalize the result of [2, Theorem 2.4].

Corollary 3.4. (1) Let a ring R have σ-skew IFP for a monomorphism σ of R.
Then R is semiprime if and only if R is reduced.

(2) R is a σ-rigid ring if and only if R is a semiprime ring that has σ-skew IFP
and σ is a monomorphism.

Proof. Note that a semiprime ring has IFP if and only if reduced.

Proposition 3.5. Let R be a ring with an endomorphism σ. Then R is a σ-skew
power-serieswise Armendariz ring if and only if for every p(x) =

∑∞
i=0 aix

i and
q(x) =

∑∞
j=0 bjx

j ∈ R[[x; σ]], p(x)q(x) = 0 implies a0bj = 0 for all j.

Proof. We here adapt the proof of [21, Theorem 2.2], extending skew polynomials
to skew power series.

Corollary 3.6. (1) Every skew power-serieswise σ-Armendariz ring is σ-skew
power-serieswise Armendariz.

(2) A ring R is power-serieswise Armendariz if and only if for every f(x) =∑∞
i=0 aix

i and g(x)=
∑∞

j=0 bjx
j ∈ R[[x]], f(x)g(x)=0 implies a0bj =0 for any j.

Every domain with a monomorphism σ is σ-rigid by a simple computation, and
moreover the condition “σ is a monomorphism” is not superfluous by [2, Example
2.5(2)].

Proposition 3.7. Let R be a domain with an endomorphism σ. Then R is σ-skew
power-serieswise Armendariz.

Proof. Let p(x)q(x) = 0 where p(x) =
∑∞

i=0 aix
i, q(x) =

∑∞
i=1 bjx

j ∈ R[[x; σ]].
From a0b0 = 0, we have a0 = 0 or b0 = 0. If a0 = 0, then a0bj = 0 for all j.
Hence R is σ-skew power-serieswise Armendariz by Proposition 3.5. Next suppose
a0 �= 0. Then b0 = 0. Since 0 = a0b1 + a1σ(b0) = a0b1, we have b1 = 0. From
0 = a0b2 + a1σ(b1) + a2σ

2(b0) = a0b2, we obtain b2 = 0. Inductively assume
b0 = b1 = · · · = bs = 0. Then from 0 = a0bs+1 + a1σ(bs) + · · · + asσ

s(b1) +
as+1σ

s+1(b0) = a0bs+1, we get bs+1 = 0. This yields q(x) = 0. Consequently we
get that a0bj = 0 for all j in any case. Therefore R is σ-skew power-serieswise
Armendariz by Proposition 3.5.
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The following example shows that the converse of Corollary 3.6(1) does not hold
and the conclusion of Proposition 3.7 cannot be replaced by “R is skew power-
serieswise σ-Armendariz”.

Example 3.8. Let R = Z2[x] with an endomorphism σ : R → R defined by
σ(f(x)) = f(0). Then R is not σ-Armendariz by [12, Example 1.9] and so not skew
power-serieswise σ-Armendariz. Note that R is σ-skew power-serieswise Armendariz
by Proposition 3.7.

A ring R is called reversible [5] if ab = 0 implies ba = 0 for a, b ∈ R. It is
obvious that commutative rings and reduced rings are reversible and reversible rings
have IFP, but not conversely in general. From an endomorphism σ of a ring R, we can
induce an endomorphism σ̄ of R[[x; σ]] by defining σ̄(

∑∞
i=0 aix

i) =
∑∞

i=0 σ(ai)xi.

Theorem 3.9. Suppose that R is a σ-skew power-serieswise Armendariz ring.
Then we have the following results.

(1) R has IFP if and only if R[[x; σ]] has IFP if and only if R[[x; σ]] has strongly
σ̄-skew IFP.

(2) Let σ be a monomorphism. (i) If R is reversible, then R is skew power-
serieswise σ-Armendariz; and (ii) R is reversible if and only if R[[x; σ]] is reversible.

Proof. Let R be σ-skew power-serieswise Armendariz. Then R has σ-skew IFP
by [11, Lemma 3.1(2)] and σ(1) = 1.

(1) It is enough to show that R[[x; σ]] has strongly σ̄-skew IFP when R has
IFP, since the class of rings that have strongly σ-skew IFP is closed under sub-
rings. Suppose that R has IFP. Then R has strongly σ-skew IFP by Lemma 2.5.
Let p(x)q(x) = 0 for p(x) =

∑∞
i=0 aix

i, q(x) =
∑∞

j=0 bjx
j ∈ R[[x; σ]]. Then

aiσ
i(bj) = 0 for all i, j, since R is σ-skew power-serieswise Armendariz. Hence

aiRσt+i(bj) = 0 and so ai(Rxt)σi(bj) = 0 for all i, j and t ≥ 0 because R has
strongly σ-skew IFP. This implies p(x)(ctx

t)q(x) = 0 for any ctx
t ∈ R[[x; σ]] and

all t ≥ 0. Therefore p(x)R[[x; σ]]q(x) = 0, proving that R[[x; σ]] has IFP. Since
R[[x; σ]] has IFP, aiσ

i(σ(bj)) = 0 and so aiRσt+i(σ(bj)) = 0 and equivalently,
ai(Rxt)σi(σ(bj)) = 0 for all i, j and t ≥ 0, and hence p(x)R[[x; σ]]σ̄(q(x)) = 0.
Consequently, p(x)R[[x; σ]]σ̄s(q(x)) = 0 for any s ≥ 0 and therefore R[[x; σ]] has
strongly σ̄-skew IFP.

(2)-(i) Let R be reversible and p(x)q(x) = 0 for p(x) =
∑∞

i=0 aix
i, q(x) =∑∞

j=0 bjx
j ∈ R[[x; σ]]. Then aiσ

i(bj) = 0 and σi(bj)ai = 0. Since R has σ-skew
IFP, σi(bj)σi(ai) = 0 for all i, j by hypothesis. Thus σi(bjai) = 0 and so bjai = 0
for all i, j, since σ is a monomorphism. Hence aibj = 0 for all i, j and therefore R is
skew power-serieswise σ-Armendariz.

(ii) It suffices to show the necessity. Suppose that R is reversible. Let p(x)q(x) = 0
for p(x) =

∑∞
i=0 aix

i, q(x) =
∑∞

j=0 bjx
j ∈ R[[x; σ]]. Then aibj = 0 for all i, j by (i)
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and so bjai = 0, yielding that bjRσj(ai) = 0 since R has strongly σ-skew IFP. Then
bjσ

j(ai) = 0 for all i, j and so q(x)p(x) = 0, proving that R[[x; σ]] is reversible.

The hypothesis “R is a σ-skew power-serieswise Armendariz ring” in Theorem
3.9(1) cannot be dropped: Indeed, the ring R which has strongly σ-skew IFP of Example
2.8 is not σ-skew power-serieswise Armendariz and R[[x; σ]] does not have σ̄-skew
IFP by the same argument as in Example 2.8.

Proposition 3.10. If R is a skew power-serieswise σ-Armendariz ring, then R has
strongly σ-skew IFP and R[[x; σ]] has strongly σ̄-skew IFP.

Proof. We first show that R has strongly σ-skew IFP, applying the proof of [11,
Lemma 3.1(2)]. Let R be a skew power-serieswise σ-Armendariz ring. Let ab = 0 for
a, b ∈ R. Then for any l ≥ 1 and r ∈ R, we have

0 = ab = a(1− rxl)(1 + rxl + rσl(r)x2l + rσl(r)σ2l(r)x3l + · · · )b
= (a− arxl)(b + rσl(b)xl + rσl(r)σ2l(b)x2l + rσl(r)σ2l(r)σ3l(b)x3l + · · · ),

so we get arb = 0 and arσl(b) = 0. Thus aRσn(b) = 0 for all n ≥ 0, and so
R has strongly σ-skew IFP. Therefore R[[x; σ]] has strongly σ̄-skew IFP by Theorem
3.9(1).

Note that if σ is an endomorphism of a ring R, then σ can be extended to the
endomorphism σ̄ of n × n full matrix ring Matn(R) over R defined by σ̄((aij)) =
(σ(aij)). It is well-known that for n ≥ 2, Matn(R) and the upper triangular matrix
ring Un(R) over any ring R are not Abelian and so do not have IFP, and hence they
do not have strongly σ̄-skew IFP.

Let R be a reduced ring with an endomorphism σ and

D(R) =

⎧⎨
⎩

⎛
⎝ a b c

0 a d
0 0 a

⎞
⎠ | a, b, c, d ∈ R

⎫⎬
⎭ .

Then the ring R has (strongly) σ-skew IFP if and only if D(R) has (strongly) σ̄-skew
IFP if and only if T (R, R) has (strongly) σ̄-skew IFP by combining [17, Proposition
1.2 and Proposition 1.6] and [2, Proposition 2.10 and Proposition 2.13].

Proposition 3.11. Let R be a ring with a monomorphism σ. The following condi-
tions are equivalent:

(1) R is a σ-rigid ring.
(2) D(R) is a skew power-serieswise σ̄-Armendariz ring.
(3) D(R) is a σ̄-skew power-serieswise Armendariz ring.
(4) T (R, R) is a skew power-serieswise σ̄-Armendariz ring.
(5) T (R, R) is a σ̄-skew power-serieswise Armendariz ring.
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Proof. (1)⇒(2): Suppose that R is a σ-rigid ring. Then R[[x; σ]] is reduced by
[8, Corollary 18]. For

⎛
⎝ a1 b1 c1

0 a1 d1

0 0 a1

⎞
⎠ ,

⎛
⎝ a2 b2 c2

0 a2 d2

0 0 a2

⎞
⎠ ∈ D(R),

we denote their addition and multiplication by

(a1, b1, c1, d1) + (a2, b2, c2, d2) = (a1 + a2, b1 + b2, c1 + c2, d1 + d2) and

(a1, b1, c1, d1)(a2, b2, c2, d2) = (a1a2, a1b2 + b1a2, a1c2 + b1d2 + c1a2, a1d2 + d1a2),

respectively. So every p(x) ∈ D(R)[[x; σ̄]] can be expressed by the form of (p0, p1, p2,
p3) for some pi’s in R[[x; σ]]. Let p(x) = (p0, p1, p2, p3) and q(x) = (q0, q1, q2, q3) ∈
D(R)[[x; σ̄]] with p(x)q(x) = 0, where p0 =

∑∞
i=0 aix

i, p1 =
∑∞

i=0 bix
i, p2 =∑∞

i=0 cix
i, p3 =

∑∞
i=0 dix

i, q0 =
∑∞

j=0 a′jx
j, q1 =

∑∞
j=0 b′jx

j , q2 =
∑∞

j=0 c′jx
j and

q3 =
∑∞

j=0 d′jx
j . By the same argument as in the proof of [9, Proposition 17], we can

show that D(R) is skew power-serieswise σ̄-Armendariz.
(2)⇒(3) and (4)⇒(5) follow from Corollary 3.6(1).
(2)⇒(4) and (3)⇒(5) are obvious, since the class of skew power-serieswise σ-

Armendariz (resp., σ-skew power-serieswise Armendariz) rings is clearly closed under
subrings.

(5)⇒(1): Suppose that T (R, R) is a σ̄-skew power-serieswise Armendariz ring and
σ̄ is a monomorphism. Let aσ(a) = 0 for a ∈ R. We denote elements of T (R, R) by
(a, b). Note that σ(1) = 1. Consider the polynomials p(x) = (0, 1) + (−a, 0)x and
q(x) = (0, 1)+(a, 0)x ∈ T (R, R)[[x; σ̄]]. Then p(x)q(x) = 0, and so (0, 1)(a, 0) = 0.
Thus a = 0, entailing that R is σ-rigid.

Recall that there are many examples of non-reduced (and hence non-σ-rigid) skew
power-serieswise σ-Armendariz rings as in [22, Section 4]. These examples and D(R)
in Proposition 3.11, which are skew power-serieswise σ̄-(or σ-)Armendariz, are neither
quasi-Baer nor p.p.-rings. But there also exist skew power-serieswise σ-Armendariz
rings which are Baer or quasi-Baer. For example, letting K be a finite direct product of
fields and σ be a monomorphism of K such that K has σ-skew IFP, R[[x; σ]] (R[x; σ])
is Baer by Theorem 2.2 and the fact that left (or right) self-injective von Neumann
regular rings are Baer [19, Proposition 4.1].

Recall that for an ideal I of R, if σ(I) ⊆ I then σ̄ : R/I → R/I defined by
σ̄(a+I) = σ(a)+I is an endomorphism of a factor ring R/I . The homomorphic image
of a skew power-serieswise σ-Armendariz ring need not be σ̄-skew power-serieswise
Armendariz by the following example.
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Example 3.12. We adapt the construction of [9, Example 7] to our argument. Let
R be the trivial extension of Z by Z4, i.e., R = T (Z, Z4), and σ an endomorphism
defined by σ((a, s)) = (a,−s). Note that tl is odd if and only if (−1)wtl is odd
for all tl ∈ Z4 and w ≥ 1. Let h(x) ∈ Z[[x]] and k(x) ∈ Z4[[x]]. In the product
h(x)k(x) = k(x)h(x), note that every coefficient of h(x) can be identified by the
remainder divided by 4. We will use these facts without mention. Note that every
f(x) =

∑∞
i=0(ui, vi)xi ∈ R[[x; σ]] can be expressed by f(x) = (f0, f1) with f0 =∑∞

i=0 uix
i ∈ Z[[x]] and f1 =

∑∞
i=0 vix

i ∈ Z4[[x]].
Let p(x) =

∑∞
i=0(ai, si)xi = (p0, p1) and q(x) =

∑∞
j=0(bj, tj)xj = (q0, q1) ∈

R[[x; σ]]. Then p0 =
∑∞

i=0 aix
i, p1 =

∑∞
i=0 six

i, q0 =
∑∞

j=0 bjx
j , and q1 =∑∞

j=0 tjx
j . Suppose p(x)q(x) = 0. Then p0q0 = 0 in Z[[x]], and so p0 = 0 or

q0 = 0 since Z[[x]] is a domain.
If p0 = 0, then p1q0 = 0 from p(x)q(x) = 0. Then sibj = 0 for all i, j by [15,

Proposition 3.2].
If q0 = 0, then p0q1 = 0 from p(x)q(x) = 0. We here can let a0 �= 0 and t0 �= 0

without loss of generality. We claim that both ai and tj are even for all i and j.
Assume that i0 and j0 are minimal indices such that ai0 and tj0 are odd, respectively.
Then we obtain

0 = 2[a0tm + a1((−1)tm−1) + · · ·+ ai0−1((−1)i0−1tj0+1)

+ ai0((−1)i0tj0)

+ ai0+1((−1)i0+1tj0−1) + · · ·+ am((−1)mt0)] = 2ai0((−1)i0tj0),

where m = i0 + j0. This entails that ai0tj0 is even, a contradiction.
Next assume that i0 is the minimal index such that ai0 is odd. Then every tj must

be even by the preceding computation; especially t0 = 2. So we get

0 = a0ti0 +a1((−1)ti0−1)+ · · ·+ai0−1((−1)i0−1t1)+ai0((−1)i0t0) = ai0((−1)i0t0),

a contradiction since ai0((−1)i0t0) = 2.
A contradiction also occurs similarly for the case that every ai is even and some

tj is odd. Thus we must have that ai and tj are even for all i and j.
Therefore (ai, si)(bj, tj) = 0 for all i, j in any case, and this implies that R is

skew power-serieswise σ-Armendariz.
However, the factor ring R/I ∼= {(a, b) | a, b ∈ Z4}, where I = {(a, 0) | a ∈ 4Z}

is an ideal of R such that σ(I) ⊆ I , is not σ̄-skew power-serieswise Armendariz as
can be seen by the computation in [9, Example 7] that ((2̄, 0̄) + (2̄, 1̄)x)2 = 0 but
(2̄, 0)(2̄, 1̄) �= 0 in (R/I)[[x; σ̄]].

The next example illuminates that there exists a ring R with an endomorphism
σ such that for any ideal I of R with σ(I) ⊆ I , R/I is skew power-serieswise σ̄-
Armendariz and I is skew power-serieswise σ-Armendariz but R does not have σ-skew
IFP.
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Example 3.13. Consider the 2 × 2 upper triangular matrix ring R = U2(D) over
a division ring D with an endomorphism σ defined by

σ

((
a b
0 c

))
=

(
a −b
0 c

)
.

Then R does not have σ-skew IFP. For,
(

1 −1
0 0

)(
0 1
0 1

)
= 0 but

(
1 −1
0 0

)(
1 1
0 1

)
σ

((
0 1
0 1

))
�= 0.

Hence, R is not σ-skew power-serieswise Armendariz.
Next, note that the only nonzero proper ideals of R are

I1 =
(

D D

0 0

)
, I2 =

(
0 D

0 D

)
and I3 =

(
0 D

0 0

)

and σ(Ii) ⊆ Ii for i = 1, 2, 3. Then R/I1 and R/I2 are isomorphic to D and so they
are skew power-serieswise σ̄-Armendariz by Theorem 3.9(2)-(i). The ring

R/I3 =
{(

a 0
0 c

)
+ I3 | a, c ∈ D

}

is a reduced ring (i.e., idR/I3-rigid), and hence each R/Ii (for i = 1, 2, 3) is skew
power-serieswise σ̄-Armendariz.

Notice that all Ii are not reduced as rings without identity. We show that each Ii

(for i = 1, 2, 3) is skew power-serieswise σ-Armendariz. Clearly I3 is power-serieswise
σ-Armendariz.

Let p(x)q(x) = 0 for p(x) =
∑∞

i=0 Aix
i and q(x) =

∑∞
j=0 Bjx

j ∈ I1[[x; σ]],

where Ai =
(

ai bi

0 0

)
and Bj =

(
cj dj

0 0

)
for all i, j. Let A0 �= 0 and B0 �= 0

without loss of generality. From A0B0 = 0, we obtain a0c0 = 0 and a0d0 = 0.
Since B0 �= 0, a0 = 0 and so A0Bj = 0 for all j. From A0B1 + A1σ(B0) = 0, we
have A1σ(B0) = 0 and so a1 = 0. Hence, A1σ(Bj) = 0 and A1Bj = 0 for all j.
Inductively assume that a0 = a1 = . . . = as = 0. Then AkBj = 0 = Akσ

k(Bj) for all
0 ≤ k ≤ s and j. Since 0 = A0Bs+1 +A1σ(Bs)+· · ·+Asσ

s(B1)+As+1σs+1(B0) =
As+1σ

s+1(B0), we get as+1 = 0. Consequently, we get that AiBj = 0 for all i, j.
Therefore I1 is skew power-serieswise σ-Armendariz.

By the similar method to the above, we can show that I2 is skew power-serieswise
σ-Armendariz.

For a ring R, let rAnnR(2R) = {rR(U) | U ⊆ R} and recall the set of coefficients
Cp(x) of p(x), for p(x) ∈ R[[x; σ]].
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Proposition 3.14. Let σ be an endomorphism of a ring R. Then the following
conditions are equivalent:

(1) R is skew power-serieswise σ-Armendariz.
(2) Φ : rAnnR(2R) → rAnnR[[x;σ]](2R[[x;σ]]) is bijective with Φ(rR(U)) =

rR(U)R[[x; σ]] for some U ⊆ R, and aσ(b) = 0 implies ab = 0 for a, b ∈ R.

Proof. (1)⇒(2): We first claim that Φ is well-defined. Letting U ⊆ R then
rR[[x;σ]](U) = rR(U)R[[x; σ]], determining the map Φ : rAnnR(2R) → rAnnR[[x;σ]]

(2R[[x;σ]]) with Φ(rR(U)) = rR(U)R[[x; σ]] for every rR(U) ∈ rAnnR(2R). We
next show that Φ is injective. Put Φ(rR(A)) = Φ(rR(B)) for A, B ⊆ R. Then
rR(A)R[[x; σ]] = rR(B)R[[x; σ]] and so rR[[x;σ]](A) = rR[[x;σ]](B) by the above.
Thus

rR(A) = rR[[x;σ]](A) ∩ R = rR[[x;σ]](B) ∩ R = rR(B),

entailing that Φ is injective.
Let V be a subset of R[[x; σ]] and CV denote the set

⋃
p(x)∈V Cp(x). By the similar

computation to the proof of [7, Proposition 3.1], we can show that Φ is surjective.
Now, let p(x) ∈ V . Then we have rR[[x;σ]](p(x)) = rR[[x;σ]](Cp(x)) = rR(Cp(x))R[[x; σ]],

since R is skew power-serieswise σ-Armendariz. Hence, we get rR(p(x)) = rR(Cp(x))
and so axkb = 0 implies ab = 0 for a, b ∈ R and k ≥ 1.

(2)⇒(1): Let p(x)q(x) = 0 for p(x) =
∑∞

i=0 aix
i and q(x) =

∑∞
j=0 bjx

j ∈
R[[x; σ]]. Then q(x) ∈ rR[[x;σ]](p(x)) = rR(U)R[[x; σ]] for some U ⊆ R by hypoth-
esis. For any c ∈ rR(U), p(x)c = 0 and so aiσ

i(c) = 0 for all i. By the condition,
aic = 0 and this yields aiq(x) = 0 since bj ∈ rR(U) for all i and j.

Note. In Proposition 3.14, assume that Φ : rAnnR(2R) → rAnnR[[x;σ]](2R[[x;σ]])
is bijective with Φ(rR(U)) = rR(U)R[[x; σ]] for some U ⊆ R. Then R has σ-skew
IFP. To see this, let ab = 0 for a, b ∈ R. Then a(1−rx)(1+rx+rσ(r)x2 + · · · )b = 0
for every r ∈ R. Let p(x) = a(1 − rx) and q(x) = (1 + rx + rσ(r)x2 + · · · )b.
By assumption, there exists U ⊆ R such that rR[[x;σ]](p(x)) = rR(U)[[x; σ]]. This
yields q(x) ∈ rR(U)[[x; σ]], so b ∈ rR(U) and arσ(b) = 0. Thus ab = 0 implies
aRσ(b) = 0.

Recall that a ring R is called σ-compatible [6] if ab = 0 ⇔ aσ(b) = 0 for
a, b ∈ R. It can be easily checked that the endomorphism σ of a σ-compatible ring
is clearly a monomorphism. Every skew power-serieswise σ-Armendariz ring is σ-
compatible by Proposition 3.14. There exists a reduced ring but not σ-compatible
as we see in R = Z2 ⊕ Z2 with σ((a, b)) = (b, a). In fact (1, 0)(0, 1) = 0 but
(1, 0)σ((0, 1)) = (1, 0) �= 0.

In [10, Theorem 1], Hong et al. showed that for a ring R with an automorphism
σ, if rR[x;σ](A) �= 0 where A is a right ideal of R[x; σ], then rR(A) �= 0. We have the
following, replacing “σ is an automorphism” to “R is a σ-compatible ring”.
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Note. Let S = R[x; σ] and suppose that R is a σ-compatible ring. If rS(f(x)S) �=
0 for f(x) ∈ S then rR(f(x)S) �= 0.

Proof. We apply the method of Hirano in the proof of [7, Theorem 2.2]. Let
f(x) =

∑m
i=0 aix

i and 0 �= g(x) =
∑n

j=0 bjx
j ∈ rS(f(x)S). If f(x) = 0 then

we are done. Let f(x) be a nonzero constant, a say. Then aRg(x) ⊂ aSg(x) = 0,
entailing aRbj = 0 for all j. Since R is σ-compatible, we get aRσk(bj) = 0 and
aRxkbj = aRσk(bj)xk = 0 for all k ≥ 1. This yields f(x)Sbj = aSbj = 0 for all j.

Next let deg(f(x)) ≥ 1, where deg(f(x)) is the degree of a polynomial f(x) ∈
R[x; σ]. Assume on the contrary that rR(f(x)S) = 0, and let g(x) be a polynomial of
minimal degree in rS(f(x)S). From f(x)Sg(x) = 0, we get f(x)Rg(x) = 0 and so
amRσn(bn) = 0, equivalently amRσk(bn) = 0 for all k ≥ 1 by the σ-compatibility of
R. This implies

amSg(x) = amS(bn−1x
n−1 + · · ·+ b0)

and

0 = f(x)Sg(x) ⊇ f(x)S(amSg(x)) = f(x)S(amS(bn−1x
n−1 + · · ·+ b0)).

So amR(bn−1x
n−1 + · · ·+ b0) ⊂ rS(f(x)S), and this forces amR(bn−1x

n−1 + · · ·+
b0) = 0 since g(x) is of minimal degree in rS(f(x)S). We moreover obtain

amxmSg(x) ⊂ amSg(x) = amS(bn−1x
n−1 + · · ·+ b0) = 0

by the σ-compatibility of R, entailing (am−1x
m−1 + · · · + a0)Sg(x) = 0. Now we

repeat the same computation on (am−1x
m−1 + · · ·+ a0) and g(x). Then we obtain

am−1x
m−1Sg(x)

= am−1x
m−1S(bn−1x

n−1 + · · ·+ b0) ⊂ am−1S(bn−1x
n−1 + · · ·+ b0) = 0.

Inductively we finally obtain that aix
iSg(x) = 0 (hence aix

iRg(x) = 0) for all i.
This also yields that aiRσi(bj) = 0 (equivalently, aiRσk(bj) = 0 for all k ≥ 0 by
the σ-compatibility of R) for all i, j. This implies f(x)Sbj = 0 for all j, proving our
claim.
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