Open Access
2013 CLASS NUMBER ONE CRITERION FOR SOME NON-NORMAL TOTALLY REAL CUBIC FIELDS
Jun Ho Lee
Taiwanese J. Math. 17(3): 981-989 (2013). DOI: 10.11650/tjm.17.2013.2424

Abstract

Let ${\{K_m\}_{m\geq 4}}$ be the family of non-normal totally real cubic number fields defined by the irreducible cubic polynomial $f_m(x) = x^3 - mx^2 - (m+1)x - 1$, where $m$ is an integer with $m\geq 4$. In this paper, we will give a class number one criterion for $K_m$.

Citation

Download Citation

Jun Ho Lee. "CLASS NUMBER ONE CRITERION FOR SOME NON-NORMAL TOTALLY REAL CUBIC FIELDS." Taiwanese J. Math. 17 (3) 981 - 989, 2013. https://doi.org/10.11650/tjm.17.2013.2424

Information

Published: 2013
First available in Project Euclid: 10 July 2017

zbMATH: 1282.11149
MathSciNet: MR3072272
Digital Object Identifier: 10.11650/tjm.17.2013.2424

Subjects:
Primary: 11R42
Secondary: 11R16 , 11R29

Keywords: Class number , cubic fields , zeta function

Rights: Copyright © 2013 The Mathematical Society of the Republic of China

Vol.17 • No. 3 • 2013
Back to Top