Translator Disclaimer
2013 SHIRRA: A REFINED VARIANT OF SHIRA FOR THE SKEW-HAMILTONIAN/HAMILTONIAN (SHH) PENCIL EIGENVALUE PROBLEM
Zhongxiao Jia, Yuquan Sun
Taiwanese J. Math. 17(1): 259-274 (2013). DOI: 10.11650/tjm.17.2013.1949

Abstract

Combining the Skew-Hamiltonian Isotropic implicitly Restarted Arnoldi algorithm (SHIRA) due to Mehrmann and Waktins and the refined projection principle proposed by the first author, we present a Skew-Hamiltonian Isotropic implicitly Restarted Refined Arnoldi algorithm (SHIRRA) for the skew-Hamiltonian/Hamiltonian (SHH) pencil eigenvalue problem. Within SHIRRA, we propose new shifts, called refined shifts, that are theoretically better and numerically more efficient than the exact shifts used within SHIRA. Numerical examples illustrate the efficiency and superiority of SHIRRA.

Citation

Download Citation

Zhongxiao Jia. Yuquan Sun. "SHIRRA: A REFINED VARIANT OF SHIRA FOR THE SKEW-HAMILTONIAN/HAMILTONIAN (SHH) PENCIL EIGENVALUE PROBLEM." Taiwanese J. Math. 17 (1) 259 - 274, 2013. https://doi.org/10.11650/tjm.17.2013.1949

Information

Published: 2013
First available in Project Euclid: 10 July 2017

zbMATH: 1264.65053
MathSciNet: MR3028868
Digital Object Identifier: 10.11650/tjm.17.2013.1949

Subjects:
Primary: 65F15

Rights: Copyright © 2013 The Mathematical Society of the Republic of China

JOURNAL ARTICLE
16 PAGES


SHARE
Vol.17 • No. 1 • 2013
Back to Top