
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 17, No. 1, pp. 259-274, February 2013
DOI: 10.11650/tjm.17.2013.1949
This paper is available online at http://journal.taiwanmathsoc.org.tw

SHIRRA: A REFINED VARIANT OF SHIRA FOR THE
SKEW-HAMILTONIAN/HAMILTONIAN (SHH) PENCIL EIGENVALUE

PROBLEM

Zhongxiao Jia and Yuquan Sun

Abstract. Combining the Skew-Hamiltonian Isotropic implicitlyRestarted Arnoldi
algorithm (SHIRA) due to Mehrmann and Waktins and the refined projection prin-
ciple proposed by the first author, we present a Skew-Hamiltonian Isotropic im-
plicitly Restarted Refined Arnoldi algorithm (SHIRRA) for the skew-Hamiltonian/
Hamiltonian (SHH) pencil eigenvalue problem. Within SHIRRA, we propose new
shifts, called refined shifts, that are theoretically better and numerically more effi-
cient than the exact shifts used within SHIRA. Numerical examples illustrate the
efficiency and superiority of SHIRRA.

1. INTRODUCTION

Consider the computation of several eigenvalues of the large quadratic eigenvalue
problem (QEP)

(1) λ2Mx + λGx + Kx = 0, x �= 0,

where M = MT is positive definite, and G = −GT , K = KT are all n × n real
matrices.
The QEPs arise in many applications, in which M is often a mass matrix and K

is a stiffness matrix; see, e.g., [2]. We are interested in a few eigenvalues nearest to a
target σ. It is well known [11] that the spectrum of (1) has special structure and the
eigenvalues occur in either quadruplets (λ, λ̄,−λ,−λ̄) or real and purely imaginary
pairs (λ,−λ).
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A commonly used approach is to transform (1) into a generalized eigenvalue prob-
lem, e.g.,

(2) λ

[
M G
0 M

] [
y
x

]
−

[
0 −K
M 0

] [
y
x

]
= 0

with y = λx and then solve it by a suitable numerical method. For (2), its mathematical
theory has been well established and various numerical methods have been developed
[12, 14].
Mehrmman and Watkins [11] have proposed the Skew-Hamiltonian Isotropic im-

plicitly Restarted Arnoldi algorithm (SHIRA) for the Skew-Hamiltonian/Hamiltonian
(SHH) matrix pencil eigenvalue problem that is reduced to a Hamiltonian eigenvalue
problem. It is an orthogonal projection method and uses the isotropic Arnoldi pro-
cess to generate an orthonormal and symplectic basis of an isotropic Krylov subspace.
The algorithm is structure preserving and ensures that the computed spectrum has the
correct eigenvalue symmetry. The algorithm exploits the implicit restarting technique
[13]. Recently, Benner, Fassbender and Stoll [1] have proposed an explicit Krylov–
Schur like restarting technique that is applied within the symplectic Lanczos algorithm
for the Hamiltonian eigenvalue problem. There, restarting is based on SR algorithm
and a purging and locking strategy is implemented to improve the convergence of the
symplectic Lanczos algorithm.
A general convergence theory for projection methods including the Arnoldi method

can be found in [5, 9, 10] and also [14, 15]. For a sequence of projection subspaces
containing increasingly accurate approximations to the eigenvectors associated with the
desired eigenvalues, it has been shown that there exist Ritz values that converge to
the desired eigenvalues, while the corresponding Ritz vectors may exhibit irregular
convergence behavior and even may fail to converge. To correct this deficiency, the
first author has proposed and developed a a class of refined projection methods, also
called the refined Rayleigh–Ritz method, in several papers, e.g., [6, 8]. For a systematic
account, see [14, 15].
Applying the implicit restarting technique [13], the first author developed Implicitly

Restarted Refined Arnoldi algorithm (IRRA) [7], where new shifts, called refined shifts,
are proposed for use within each refined algorithm. The refined shifts are theoretically
better than the corresponding exact shifts used in implicitly restarted Arnoldi algorithm.
Extensive numerical experiments have illustrated that IRRA is often considerably more
efficient than the Implicitly Restarted Arnoldi (IRA) algorithm, whose Matlab function
is eigs.
In this paper, based on the refined projection principle [6], we present a refined

variant of SHIRA. The refined method extracts certain refined approximate eigenvec-
tors, called refined Ritz vectors, in the sense of residual minimizations of approximate
eigenpairs. Applying the implicit restarting technique, we develop a Skew-Hamiltonian
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Isotropic implicitly restarted Refined Arnoldi algorithm (SHIRRA). Within SHIRRA,
we propose new shifts, called refined shifts, that are shown to be theoretically better
and numerically more efficient than the exact shifts used within SHIRA. In order to
design comparable stopping criteria for SHIRRA and SHIRA in numerical experiments,
we derive some residual relationship between Ritz vectors and the invariant subspace
spanned by them. We develop the Matlab code of SHIRRA and make numerical ex-
periments to show the efficiency and superiority of SHIRRA to SHIRA.
The paper is organized as follows. In Section 2 we briefly review SHIRA. In

Section 3 we propose a skew-Hamiltonian isotropic refined Arnoldi method and develop
SHIRRA with the refined shifts suggested. We discuss some implementational details
in Section 4. In Section 5, we report numerical experiments to show the efficiency and
superiority of SHIRRA to SHIRA. Finally, we conclude the paper in Section 6.
Throughout the paper, we denote by ‖·‖ the Euclidean vector norm and the induced

spectral norm of a matrix, by ‖ · ‖F the Frobenius norm and by the superscript T the
transpose of a matrix or vector, respectively. The skew-symmetric matrix J is defined
as

(3) J =
[

0 In

−In 0

]
.

2. REVIEW OF SHIRA

We briefly review SHIRA in [11]. Let

N =
[

M G
0 M

]
, U =

[
0 −K
M 0

]
.

Then N is skew-Hamiltonian, U is Hamiltonian and (2) becomes

(4) λNz − Uz = 0,

which is a SHH matrix pencil eigenvalue problem.
Let N be given in the factored form N = Z1Z2 with

(5) Z1 =
[

I 1
2G

0 M

]
, Z2 =

[
M 1

2G

0 I

]
.

Then ZT
2 J = JZ1 and λN − U is equivalent to λI − W, where W = Z−1

1 UZ−1
2 is

Hamiltonian. Suppose that some eigenvalues of W nearest to a target point σ are of
interest. Then Mehrmann and Watkins [11] suggest a rational transformation with four
targets (σ,−σ, σ̄,−σ̄) given by

R1(σ, W ) = (W − σI)−1(W − σ̄I)−1(W + σI)−1(W + σ̄I)−1.

If the target σ is either real or purely imaginary, they propose to use a simpler trans-
formation
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R2(σ, W ) = (W − σI)−1(W + σI)−1.

If the matrix W is real and Hamiltonian, then both R1(σ, W ) and R2(σ, W ) are real
and skew-Hamiltonian [11]. Hence we can get the eigenvalues near these targets if
standard iterative methods [12, 13] are applied to R1(σ, W ) or R2(σ, W ).
Assume A ∈ R2n×2n to be skew-Hamiltonian. Then it is shown [16] that there

exists a column orthonormalQ ∈ R2n×n such that [Q, JQ] is orthogonal and symplectic
and

(6) [Q, JQ]TA[Q, JQ] =
[

H F
0 HT

]

with FT = −F and H upper Hessenberg. For each double eigenvalue of A, one copy
resides in H and the other copy is in HT . So the spectral information of A will not
be lost when we only deal with H . Define the Krylov subspace

Km(A, q1) = span{q1, Aq1, . . . , A
m−1q1},

starting with a unit length vector q1. This is an isotropic subspace and an orthonormal
and symplectic basis {qj}m

j=1 of it can be generated by the m-step isotropic Arnoldi
process

(7) AQm = QmHm + JQmTm + qm+1hm+1meT
m = Qm+1H̃m,

where Qm = (q1, . . . , qm), Tm = 0 is zero in exact arithmetic, Hm is an m×m upper
Hessenberg matrix, em is the m-th coordinate vector of dimension m, and H̃m is the
(m + 1)× m augmented matrix of Hm with the last row being (0, . . . , 0, hm+1m).
From (7) and the definition of J , we get

QT
mAQm = Hm,(8)

[Qm, JQm]TA[Qm, JQm] =
[

Hm Fm

HT
m

]
.(9)

SHIRA computes the eigenvalues μ̃i, i = 1, 2, . . . , m, of Hm and select k ones
among them to approximate the desired k eigenvalues of A. This way computes some
eigenvalues of A in duplicate and the other copy resides in HT

m. If the k Ritz values
converge, one will get simultaneously 2k eigenvalues of A.

3. SHIRRA AND A REFINED SHIFTS SCHEME

As shown in [7, 13], the selection of shifts is one of the keys for the success of an
implicitly restarted algorithm. For SHIRA, Mehrmann and Watkins take those unwanted
m−k eigenvalues (Ritz values) of Hm as shifts, called exact shifts. Combining SHIRA
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and the refined Arnoldi method [7], in this section we present a refined variant of
SHIRA and develop a Skew-Hamiltonian Isotropic implicitly Restarted Refined Arnoldi
algorithm (SHIRRA) with certain refined shifts proposed. We will show that the refined
shifts are theoretically better and numerically more efficient than the exact shifts.
Suppose yi’s are the eigenvectors associated with the desired μi, i = 1, 2, . . . , k of

A = R1(σ, W ) or R2(σ, W ). If an m-step isotropic Arnoldi process is run, then the
refined Arnoldi method works as follows: It first computes the eigenvalues (Ritz values)
of Hm and among them selects k Ritz values μ̃i, i = 1, 2, . . . , k as approximations
to the desired μi. Then for each μ̃i, i = 1, 2, . . . , k the structure preserving refined
Arnoldi method seeks a unit length vector ui ∈ Km(A, q1) satisfying the optimality

(10) ‖(A− μ̃iI)ui‖ = min
‖u‖=1,u∈Km(A,q1)

‖(A− μ̃iI)u‖

and uses it to approximate yi. ui is called a refined eigenvector approximation.
Let zi be the right singular vector of the (m+1)×m matrix H̃m− μ̃iĨm associated

with its smallest singular value σmin,i, where Ĩm is the same as the m × m identity
matrix augmented with an additional zero row. Then it is shown [6] that

ui = Qmzi,(11)

‖(A − μ̃iI)ui‖ = σmin,i.(12)

Let ϕi, i = 1, 2, . . . , k be the Ritz vectors of A associated with the μ̃i’s. Next we
develop SHIRRA. As in SHIRA, the implicit restarting technique is directly applicable.
So we are concerned with a reasonable selection of shifts involved. For IRRA, based
on the refined eigenvector approximations, the first author [7] has proposed the refined
shifts that are theoretically better and numerically more efficient than the exact shifts
[13] for IRA. In the same spirit, we can adapt the refined shifts scheme to SHIRRA.
As done in [7], we make the following orthogonal direct sum decompositions:

Km(A, q1) = span{u1, . . . , uk} ⊕ span{u1, . . . , uk}⊥

= span{ϕ1, . . . , ϕk} ⊕ span{ϕ1, . . . , ϕk}⊥,

Note that SHIRA uses the unwanted Ritz values μ̃j, j = k + 1, . . . , m as shifts, called
the exact shifts. As is done in [7], it can be verified that the exact shifts are the Ritz val-
ues of A with respect to the deflated subspace span{ϕ1, . . . , ϕk}⊥, which is the orthog-
onal complement of span{ϕ1, . . . , ϕk} with respect to Km(A, q1). Since u1, . . . , uk

are the optimal approximations in the sense of residual minimizations with respect
to the spectral norm and μ̃i, i = 1, 2, . . . , k, they are generally more accurate than
ϕi, i = 1, 2, . . . , k. Then the deflated subspace span{u1, . . . , uk}⊥ contains more in-
formation on the unwanted eigenvectors than the deflated subspace span{ϕ1, . . . , ϕk}⊥
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does. As is well known, if a subspace contains more information on the desired eigen-
vectors, then the Ritz values with respect to it are generally more accurate [5, 9, 12]. So
the Ritz values ξj, j = 1, 2, . . . , m− k with respect to span{u1, . . . , uk}⊥ are usually
more accurate approximations to some of the unwanted eigenvalues than those with
respect to span{ϕ1, . . . , ϕk}⊥. As shown qualitatively in [7], ξj, j = 1, 2, . . . , m− k

are theoretically better shifts than the exact shifts μ̃j , j = k + 1, . . . , m. So we take
ξj, j = 1, . . . , m − k as shifts for use within SHIRRA, called the refined shifts. For
an efficient and reliable computation of the refined shifts, we refer to [7] for details.

4. PRACTICAL IMPLEMENTATIONS

4.1. Eigenvalue computation

Like SHIRA, SHIRRA handles the matrix A = R1(σ, W ) or R2(σ, W ) and com-
putes its k eigenvalues μi, i = 1, . . . , k and the associated eigenvectors yi’s. But what
we need are the eigenvalues λ’s of the Hamiltonian matrixW . We modify the approach
used in [11] slightly and describe it as follows.
If the approximate eigenvalues μ̃1, . . . , μ̃k and the refined eigenvector approxima-

tions u1, . . . , uk have converged, we get a converged invariant subspace span{u1, . . . ,
uk} of R1(σ, W ). A feasible approach is to calculate the Ritz values of W 2 with
respect to the subspace span{u1, . . . , uk}; that is, we compute the eigenvalues γi of
Bk = V T

k W 2Vk, where Vk is an orthonormal basis of span{u1, . . . , uk}. Then ±√
γi

are the eigenvalues of W . As a byproduct, we obtain W 2Vk when forming Bk , which
is used to compute the residual norm

‖W 2Vk − VkBk‖F ,

and we check whether or not span{u1, . . . , uk} is approximately invariant under W 2.
This test is necessary because it can happen that a space that is invariant under
R1(σ, W ) fails to be invariant under W 2. The failure is rare and happens when σ
is chosen such that two distinct eigenvalues of W 2 are mapped to the same eigenvalue
of A; see [11] for arguments.

4.2. Stopping criterion

In order to design a reliable and comparable stopping criterion for SHIRRA and
SHIRA, we need to discuss the issue of how good the subspace spanned by the approx-
imate eigenvectors is when individual approximate eigenpairs are accurate enough.
Let (μ̃i, ỹi), 1, 2, . . . , k be approximate eigenpairs, e.g., the Ritz pairs or refined

Ritz pairs, of A that satisfy

(13) ‖Aỹi − μ̃iỹi‖ ≤ ε
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with ε a user-prescribed accuracy. Define the matrices

D̃ = diag(μ̃1, . . . , μ̃k), Ỹ = (ỹ1, . . . , ỹk).

Then from (13) we get

(14) ‖AỸ − Ỹ D̃‖F ≤
√

k ε.

Let Ỹ = QR be the (thin) QR factorization of Ỹ . Then the columns of Q and those
of Ỹ span the same subspace. From (14) and norm properties, we get the inequalities

(15)
‖AỸ − Ỹ D̃‖F

‖R‖ ≤ ‖AQ− QRD̃R−1‖F ≤
√

k‖R−1‖F ε.

These relationships indicate that the residual norm of span{Q} is amplified by at
most

√
k‖R−1‖F times, relative to those of individual approximate eigenpairs. In our

algorithm, we use the residual norms of individual approximate eigenpairs other than
the residual norm of the subspace to decide if the algorithm converges.

4.3. Eigenvector computation

Since the eigenvectors of W 2 are generally not those of W , SHIRRA may fail to
recover the desired eigenvectors of W from those of A. Mehrmann and Watkins [11]
proposed to compute the desired eigenvectors of W by using inverse iteration after
λi, i = 1, 2, . . . , k are computed. It does not make use of the subspace information
obtained by SHIRRA. Hwang, Lin and Mehrmann [4] present a more effective proce-
dure to compute a stable invariant subspace of W directly from the invariant subspace
of W 2. They have proved

(16) span{V −} = span{WQk − QkXk},

where span{V −} is the stable subspace of W , span{Qk} is the invariant subspace of
W 2 and Xk is the positive square root of the matrix Ωk = QT

k W 2Qk satisfying X2
k =

Ωk. If we get the invariant subspace span{Qk} of W 2, we can compute the invariant
subspace span{V −} of W directly. Then we can easily get the desired eigenvalues
and eigenvectors. We have used this approach to determine a stable invariant subspace
of W in SHIRRA.

5. NUMERICAL EXPERIMENTS

We now use SHIRRA to solve some QEPs

λ2Mx + λGx + Kx = 0
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and compare it with SHIRA, IRRA and eigs. All the experiments were performed
on an Intel(R) core(TM)2 with CPU 1.86GHz and 1GB RAM using Matlab 7.1 with
εmach = 2.22× 10−16 under the Window XP system.

Example 1. We consider a QEP arising in the vibration analysis of a wire-
saw [2], where the n × n coefficient matrices are defined by M = 2In, K =
diag1≤j≤n(j2π2(1− ν2)/2) and

G = −G∗ = (gij) with gij =

⎧⎨
⎩

4ij

j2 − i2
v if i + j is odd,

0 otherwise.

Here ν is a real nonnegative parameter and we took n = 3000 and ν = 1.1. We point
out that G is almost dense, so that the resultingW is quite dense. As a consequence,
the matrix-vector products involving (W − σI)−1 and R1(σ, W ) or R2(σ, W ) are
costly, and the isotropic Arnoldi process and the standard Arnoldi process are relatively
expensive. Particularly, matrix-vector products dominate the computational cost of the
two processes for not big steps. In this case, each step of the isotropic Arnoldi process
is much more costly than that of the standard Arnoldi process since a matrix-vector
product in the former amounts to four or two matrix-vector products in the latter,
depending on use of R1(σ, W ) or R2(σ, W ).
We computed the six eigenvalues that are closest to the complex target σ1 =

1.2−115i and the purely imaginary target σ2 = 22i. So for these two targets, we used
R1(σ, W ) and R2(σ, W ), respectively. We compared SHIRRA with SHIRA, eigs and
IRRA, starting with the same initial vector generated randomly in a uniform distribution.
We applied eigs and IRRA to (W − σI)−1 in complex arithmetic. In experiments, we
used the stopping tolerance 10−9, and the maximum number of restarts was limited to
20. The subspace size was 22 and we used 12 shifts per implicit restart. Table 1 reports
the number of restarts and the CPU timings in second for eigenvalue computation.

Table 1: Example 1
targets Restarts CPU(s)

σ SHIRRA SHIRA IRRA eigs SHIRRA SHIRA IRRA eigs
1.2− 115i 2 6 6 5 165.2 354.6 207.5 174.6

22i 3 10 4 4 192.4 480.0 83.6 83.7

For SHIRRA and SHIRA, we only computed the desired eigenvalues. When the
associated eigenvectors or invariant subspace is required, we used the stable subspace
method [4] to compute. For example, the CPU time of SHIRRA for eigenvector
computation was 20.03s for σ = 1.2 − 115i. It is much less than the CPU time of
SHIRRA for computing the desired eigenvalues.
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Some observations on Table 1 are in order. First, the four algorithms worked quite
well for this problem and they found the desired eigenvalues quickly. Second, regarding
restarts, SHIRRA are three times as fast as SHIRA; regarding CPU timings, SHIRRA
was more than twice as fast as SHIRA. Third, since W is quite dense, matrix-vector
products heavily dominate the computational costs in the isotropic Arnoldi process and
the standard Arnoldi process for not big Arnoldi steps. Furthermore, the average CPU
time of SHIRRA and SHIRA per restart was considerably more than that of IRRA
and eigs, and SHIRRA and SHIRA cost more than IRRA and eigs. There are two
reasons for them. The first reason is that SHIRRA and SHIRA was coded in Matlab,
while the Arnoldi process in IRRA and eigs call the much more efficient Fortran code
ARPACK. The second reason is that a matrix-vector product in SHIRRA and SHIRA
is considerably more costly than that in IRRA and eigs, as commented above.
Next we check the approximate subspace residual norm ‖W 2Vk −VkBk‖F of W 2

for the convergence of SHIRRA and SHIRA and the tolerance was 10−6. We depict
‖W 2Vk − VkBk‖F versus restarts for k = 6 in Figure 1, where the left figure is the
convergence curve for σ = 1.2 − 115i and the right figure is for σ = 22i. For both
targets, it is clearly seen that ‖W 2Vk − VkBk‖F obtained by SHIRRA tended to zero
very quickly and smoothly, while that obtained by SHIRA decreased in the first very few
restarts and then stagnated at the level of O(10−2) for all restarts. Therefore, SHIRRA
is much more effective than SHIRA for computation of the invariant subspace.

Fig. 1. Left: σ = 1.2− 115i; Right: σ = 22i.

Finally, we report the results obtained by SHIRA with increased subspace sizes
27, 32 and numerous shifts and compare it with SHIRRA with smaller subspace size
22; see Table 2, where ‘Shifts number’ was the number of shifts used in each restart.
Since the number of shifts was variable, the dimension k of the invariant subspace
computed by SHIRA might not equal to the number of the wanted eigenvalues, we
listed the residual norms ‖W 2Vk − VkBk‖F , denoted by ‘Residual’, of k-dimensional
approximate invariant subspaces.
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Table 2: Example 1 for SHIRA

targets Shifts number Subspace size Restarts CPU(s) Residual k

σ = 1.2 − 115i 12 27 6 320.23 5.13× 10−9 7
σ = 1.2 − 115i 12 32 6 333.46 5.22× 10−9 7
σ = 1.2 − 115i 12 37 5 299.17 5.52× 10−9 7
σ = 1.2 − 115i 16 27 5 322.58 5.19× 10−9 11
σ = 1.2 − 115i 20 27 3 249.45 2.43× 10−9 7

σ = 22i 12 27 10 442.28 2.23× 10−7 6
σ = 22i 12 32 10 459.83 7.57× 10−7 6
σ = 22i 12 37 8 424.05 2.65× 10−8 7
σ = 22i 16 27 7 400.25 4.45× 10−8 6
σ = 22i 20 27 4 301.30 2.80× 10−8 7

We see from Table 2 that compared with SHIRA with subspace size 22 in Table 1,
for two targets σ’s and increased subspace sizes 27 and 32, SHIRA could reduce restarts
but in most cases it was considerably inferior to SHIRRA with smaller subspace size
22. These results demonstrate that choosing a better refined method and better refined
shifts was more important than increasing subspace size and changing number of shifts
in SHIRA.

Example 2. In this example, we take the matrices from the butterfly problem as
described in [2]. This is a quadratic matrix polynomial of dimensionm2. Its coefficient
matrices are Kronecker products with A4 and A2 real and symmetric and A3 and A1

real and skew-symmetric. For our test purpose, we setM = A4, G = A3 and K = A2

to obtain a QEP considered in the current paper.
In experiments, we took m = 100 and obtained a 10000× 10000 QEP. Moreover,

we set the involved parameter vector c = [0.1, 1.2, 1.0, 1.0, 1.2, 1.0], the same as the
original one in [2]. We are interested in the six eigenvalues that are closest to the
complex targets σ1 = −0.9− 5.5i and σ2 = 0.8 + 4.8i.
We used the four algorithms to find the desired eigenvalues. The maximum number

of restarts was 50 for SHIRRA and SHIRA and was 100 for eigs and IRRA. The
subspace size in each restart was 22 and we used 10 shifts per implicit restart. The
stopping tolerance was 10−9. We also checked the subspace residual ‖W 2Vk−VkBk‖F

of W 2 for the convergence of SHIRRA and SHIRA and the tolerance was 10−6. Some
results were listed in Table 3 for eigenvalue computation.

Table 3: Example 2
targets Restarts CPU(s)

σ SHIRRA SHIRA IRRA eigs SHIRRA SHIRA IRRA eigs
−0.9 − 5.5i 6 20 - - 53.5 162.6 - -
0.8 + 4.8i 7 10 - - 57.4 93.9 - -
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The results indicate that IRRA and eigs failed to converge for the two targets
after 100 restarts were used. In contrast, SHIRRA and SHIRA solved the problem
successfully. SHIRRA outperformed SHIRA very considerably. In terms of restarts
and CPU timings, the former was three times as fast as the latter for σ = −0.9− 5.5i
and one and a half times as fast as SHIRA for σ = 0.8 + 4.8i.
We depict the curves of ‖W 2Vk −VkBk‖F versus restarts for the given two targets

in Figure 2. We see that ‖W 2Vk − VkBk‖F obtained by SHIRRA dropped below the
prescribed tolerance 10−6. However, SHIRA failed to compute the invariant subspaces
for the two targets. For σ = −0.9 − 5.5i, ‖W 2Vk − VkBk‖F decreased slowly and
smoothly in the first 20 restarts and then stagnated around 10−4 in later 30 restarts. For
σ = 0.8 + 4.8i, SHIRA behaved worse. ‖W 2Vk − VkBk‖F experienced three stages.
In the first 5 restarts, it decreased quite slowly. Then in the five restarts followed, it
was irregular but did not exhibit significant reduction. From the 11th to the last restart,
it stagnated completely and only reached 10−2, much bigger than 10−6. Again, this
example indicates that SHIRRA is much better than SHIRA for computing the desired
invariant subspace.

Fig. 2. Left: σ = −0.9− 5.5i; Right: σ = 0.8 + 4.8i.

We see from Table 4 that for two targets σ’s and increased subspace sizes 27 and
32, SHIRA behaved irregularly and did not necessarily use fewer restarts. In most
cases, SHIRRA with smaller subspace size 22 was much more efficient than SHIRA
with subspace sizes 27 and 32. Still, these results indicate that it was the better method
and better shifts that play a more important role than simply increasing subspace size
in SHIRA.

Example 3. This problem comes from [11]. We construct some matrices of order
n = m2 by a tensor product construction. Let B denote the m × m nilpotent Jordan
block
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B =

⎡
⎢⎣

0 0
1
. . .

1 0

⎤
⎥⎦

Finally, we report the results obtained by SHIRA with increased subspace size and
compare it with SHIRRA with smaller subspace size 22. Table 4 lists the results.

Table 4: Example 2 for SHIRA
targets Shifts number Subspace size Restarts CPU(s) Residual k

σ = −0.9 − 5.5i 12 27 24 190.49 7.00× 10−14 15
σ = −0.9 − 5.5i 12 32 29 253.71 7.00× 10−14 13
σ = −0.9 − 5.5i 12 37 31 259.77 7.00× 10−14 13
σ = −0.9 − 5.5i 16 27 6 69.08 1.07× 10−10 11
σ = −0.9 − 5.5i 20 27 9 110.23 1.00× 10−10 7
σ = 0.8 + 4.8i 12 27 15 128.92 9.42× 10−10 10
σ = 0.8 + 4.8i 12 32 18 150.09 4.71× 10−10 10
σ = 0.8 + 4.8i 12 37 22 189.22 1.27× 10−9 10
σ = 0.8 + 4.8i 16 27 7 78.86 8.96× 10−12 10
σ = 0.8 + 4.8i 20 27 6 82.09 2.56× 10−9 7

and define

M̃ =
1
6
(4Im + B + BT ), G̃ = B − BT , K̃ = −(2Im − B − BT ).

Then we set

(17)
M = c11Im ⊗ M̃ + c12M̃ ⊗ Im,

G = c21Im ⊗ G̃ + c22G̃ ⊗ Im,

K = c31Im ⊗ K̃ + c32K̃ ⊗ Im,

where the coefficients cij are positive constants. We have M = MT > 0, G = −GT

and K = KT < 0.
Taking m = 150 and the coefficients

c11 = 2, c12 = 2,

c21 = 1.5, c22 = 11,
c31 = 21.4, c32 = 2.5,

we get a W of order 45000. Set σ = −0.75− 4.5i. We applied SHIRRA and SHIRA
to R1(σ, W ) as well as eigs and IRRA to (W − σI)−1 in complex arithmetic. We
used subspace size 22 and 10 shifts per implicit restart in the four algorithms and the
stopping tolerance was set to 10−9. Here we used SHIRRA and SHIRA to compute the
six eigenvalues closest to σ, which are three complex conjugate pairs and correspond to
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three quadruplets of the eigenvalues of (1). We then got the other six eigenvalues closest
to the target by taking minus of theirs. eigs and IRRA were applied to (W − σI)−1

directly for finding the six eigenvalues that are closest to the target. We then took their
complex conjugates to get the other six ones. Again, we used ten Arnoldi steps per
implicit restart. We listed the number of restarts and the CPU timings for eigenvalue
computation in Table 5.

Table 5: Example 3

SHIRRA SHIRA IRRA eigs
Restarts 19 32 20 35
CPU(s) 434.73 658.80 97.06 174.95

It is observed from the table that the four algorithms worked well but SHIRRA
outperforms SHIRA by a factor of two to three in terms of both restarts and CPU tim-
ings. Both SHIRRA and SHIRA were more efficient than IRRA and eigs, respectively.
Meanwhile, we see that IRRA was considerably better than eigs. So SHIRRA is much
more efficient than SHIRA, IRRA and eigs.
For the computation of the desired invariant subspace, just as done in Examples

1–2, we depict the curve of ‖W 2Vk − VkBk‖F versus restarts in Figure 3 for SHIRA
and SHIRRA with subspace 22. Unlike Examples 1-2, for this example we see from the
figure that both SHIRRA and SHIRA found the desired invariant subspace successfully,
but SHIRRA was considerably faster than SHIRA.

Fig. 3. Example 3.

Finally, we report the results obtained by SHIRA with much increased subspace
sizes 25, 30 and 35 and compare it with SHIRRA with much smaller subspace size
10. Table 6 lists the results. It is observed from Table 6 that for numerous shifts
and increased subspace sizes 25, 30 and 35, SHIRA behaved irregularly and did not
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necessarily use fewer restarts. In all cases, SHIRRA with smaller subspace size 10 was
much more efficient than SHIRA with dimension sizes 25, 30 and 35. Again, these
results indicate that it was the better method and better shifts that play a major role
and solved the problem more effectively.

Table 6: Example 3 for SHIRA
target Shifts number Subspace size Restarts CPU(s) Residual k

σ = −0.75 − 4.5i 10 25 33 666.31 7.26× 10−7 6
σ = −0.75 − 4.5i 10 30 27 577.06 7.40× 10−7 6
σ = −0.75 − 4.5i 10 35 30 660.92 7.22× 10−7 6
σ = −0.75 − 4.5i 14 25 23 645.73 4.65× 10−7 6
σ = −0.75 − 4.5i 18 25 39 1354.28 1.05× 10−7 6

Example 4. We consider the QEP obtained by a finite element discretization of
equations of elastic deformation of an anisotropic material [11]. The matrix has order
2223.
We computed the twelve eigenvalues closest to the imaginary axis. The six smallest

eigenvalues in the right half-plane was given in [11]. They are a priori known to lie
near the real axis, so it is reasonable to use real targets. We used ten Arnoldi steps
per implicit restart and the stopping tolerance 10−10. Table 7 lists the results. We saw
that SHIRRA and SHIRA converged very fast for this matrix but the former was faster
than SHIRA by at least one restart. We had to compute all twelve eigenvalues when
we used unstructured algorithms eigs and IRRA for σ = 0. For σ = 0.1, it is closer to
−λ1 than λ6, so we had to compute nine eigenvalues in order to find λ6. If no priori
information is known, we can reasonably select a purely imaginary target. SHIRRA
and SHIRA worked excellently for the purely imaginary target σ = 0.1i, but eigs and
IRRA did not deliver the correct eigenvalues. For this problem, both SHIRRA and
SHIRA were superior to IRRA and eigs considerably, while IRRA and eigs used the
same restarts and comparable CPU timings.

Table 7: Example 4
targets Restarts CPU(s)

σ SHIRRA SHIRA IRRA eigs SHIRRA SHIRA IRRA eigs
0 3 4 7 7 1.33 1.36 1.85 1.67

0.1 3 4 10 10 1.38 1.63 1.86 1.72
0.6 2 4 4 4 0.98 1.56 1.03 0.98
0.1i 3 4 - - 1.38 1.76 - -

6. CONCLUSION

We have considered numerical solution of SHH pencil eigenvalue problems that
stems from linearizations of certain QEPs. Combining SHIRA with the refined pro-
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jection principle, we have developed a refined variant of SHIRA algorithm (SHIRRA)
for effectively computing a few eigenvalues and the associated eigenvectors of a large
SHH pencil. Based on the refined eigenvector approximations, we have proposed re-
fined shifts for use within SHIRRA that are theoretically better and numerically more
efficient than the exact shifts for use within SHIRA. Numerical experiments have il-
lustrated that SHIRRA can outperform SHIRA considerably and often speed up IRRA
very much. Also, numerical experiments have illustrated that SHIRRA is superior to
SHIRA for eigenvector (invariant subspace) computation.
The Matlab code of SHIRRA is available and can be obtained from us.
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