Open Access
2011 COMPACTNESS OF THE DIFFERENCES OF WEIGHTED COMPOSITION OPERATORS FROM WEIGHTED BERGMAN SPACES TO WEIGHTED-TYPE SPACES ON THE UNIT BALL
Stevo Stević, Zhi Jie Jiang
Taiwanese J. Math. 15(6): 2647-2665 (2011). DOI: 10.11650/twjm/1500406489

Abstract

Let $\varphi_{1}$ and $\varphi_{2}$ be holomorphic self-maps of the open unit ball $\mathbb B$ in $\mathbb C^N$, $u_{1}$ and $u_{2}$ be holomorphic functions on $\mathbb B$ and let weighted composition operators $W_{\varphi_{1},u_{1}}$; $W_{\varphi_{2},u_{2}}: A^{p}_{\alpha} \to H^{\infty}_{v}$ be bounded. This paper characterizes the compactness of the difference of these operators from the weighted Bergman space $A^p_\alpha$, $0-1$, to the weighted-type space $H^\infty_v$ of holomorphic functions on $\mathbb B$ in terms of inducing symbols $\varphi_{1}$, $\varphi_{2}$, $u_{1}$ and $u_{2}$. For the case $p \gt 1$ we find an asymptotically equivalent expression to the essential norm of the operator.

Citation

Download Citation

Stevo Stević. Zhi Jie Jiang. "COMPACTNESS OF THE DIFFERENCES OF WEIGHTED COMPOSITION OPERATORS FROM WEIGHTED BERGMAN SPACES TO WEIGHTED-TYPE SPACES ON THE UNIT BALL." Taiwanese J. Math. 15 (6) 2647 - 2665, 2011. https://doi.org/10.11650/twjm/1500406489

Information

Published: 2011
First available in Project Euclid: 18 July 2017

zbMATH: 1315.47034
MathSciNet: MR2896136
Digital Object Identifier: 10.11650/twjm/1500406489

Subjects:
Primary: 47B38
Secondary: 47B33 , 47B37

Keywords: Compact operator , essential norm , ‎weighted Bergman space , Weighted composition operator , weighted-type space

Rights: Copyright © 2011 The Mathematical Society of the Republic of China

Vol.15 • No. 6 • 2011
Back to Top