Open Access
2010 MINIMAX THEOREMS FOR VECTOR-VALUED MAPPINGS IN ABSTRACT CONVEX SPACES
Ming-Ge Yang, Jiu-Ping Xu, Nan-Jing Huang, Su-Jane Yu
Taiwanese J. Math. 14(2): 719-732 (2010). DOI: 10.11650/twjm/1500405816

Abstract

In this paper, we introduce the concepts of $C$-quasiconcave mappings and properly $C$-quasiconcave mappings in abstract convex spaces. By using the Fan-Browder type fixed point theorem and the maximal element theorem, we establish some minimax theorems for vector-valued mappings in abstract convex spaces. We also give some examples to illustrate our results.

Citation

Download Citation

Ming-Ge Yang. Jiu-Ping Xu. Nan-Jing Huang. Su-Jane Yu. "MINIMAX THEOREMS FOR VECTOR-VALUED MAPPINGS IN ABSTRACT CONVEX SPACES." Taiwanese J. Math. 14 (2) 719 - 732, 2010. https://doi.org/10.11650/twjm/1500405816

Information

Published: 2010
First available in Project Euclid: 18 July 2017

zbMATH: 1197.49004
MathSciNet: MR2655796
Digital Object Identifier: 10.11650/twjm/1500405816

Subjects:
Primary: 47J20 , 49J35

Keywords: $C$-quasiconcave , abstract convex space , fixed point , maximal element , properly $C$-quasiconcave

Rights: Copyright © 2010 The Mathematical Society of the Republic of China

Vol.14 • No. 2 • 2010
Back to Top