Open Access
2008 POSITIVE SOLUTIONS OF P-LAPLACIAN M-POINT BOUNDARY VALUE PROBLEMS ON TIME SCALES
Hong-Rui Sun, Wan-Tong Li
Taiwanese J. Math. 12(1): 105-127 (2008). DOI: 10.11650/twjm/1500602491

Abstract

Let $\Bbb{T}$ be a time scale such that $0,T\in \Bbb{T},$ $a_i\geq 0$ for $% i=1,\ldots ,m-2.$ Let $\xi _i$ satisfy $0\lt \xi _1\lt \xi _2\lt \ldots \lt \xi _{m-2}\lt \rho (T)$ and $\sum_{i=1}^{m-2}a_i\lt 1.$ We consider the following $p$% -Laplacian $m$-point boundary value problem on time scales \begin{eqnarray*} \left( \varphi _p\left( u^\Delta (t)\right) \right) ^\nabla +a(t)f(t,u(t)) &\hspace{-0.2cm}=\hspace{-0.2cm}&0,t\in (0,T), \\ u^\Delta (0) &\hspace{-0.2cm}=\hspace{-0.2cm}&0,\text{ }u(T)=\sum_{i=1}^{m-2}a_iu(\xi _i), \end{eqnarray*} where $a\in C_{ld}[(0,T),\Bbb{[}0,\infty )]$ and $f\in C\left( (0,T)\times \Bbb{[}0,\infty ),\Bbb{[}0,\infty )\right) .$ Some new results are obtained for the existence of at least single, twin or triple positive solutions of the above problem by applying Krasnosel'skii's fixed point theorem, new fixed point theorem due to Avery and Henderson and Leggett-Williams fixed point theorem. In particular, our criteria extend and improve some known results.

Citation

Download Citation

Hong-Rui Sun. Wan-Tong Li. "POSITIVE SOLUTIONS OF P-LAPLACIAN M-POINT BOUNDARY VALUE PROBLEMS ON TIME SCALES." Taiwanese J. Math. 12 (1) 105 - 127, 2008. https://doi.org/10.11650/twjm/1500602491

Information

Published: 2008
First available in Project Euclid: 21 July 2017

zbMATH: 1147.34016
MathSciNet: MR2387107
Digital Object Identifier: 10.11650/twjm/1500602491

Subjects:
Primary: 34B15 , 34B18 , 39A10

Keywords: cone , fixed point , positive solution , Time scales

Rights: Copyright © 2008 The Mathematical Society of the Republic of China

Vol.12 • No. 1 • 2008
Back to Top