Open Access
2006 ADDITIVITY OF JORDAN MULTIPLICATIVE MAPS ON JORDAN OPERATOR ALGEBRAS
Runling An, Jinchuan Hou
Taiwanese J. Math. 10(1): 45-64 (2006). DOI: 10.11650/twjm/1500403798

Abstract

Let $H$ be a Hilbert space and $\mathcal{N}$ a nest in $H$. Denote by $S^a(H)$ the Jordan ring of all self-adjoint operators on $H$ and $\mathrm{Alg}\mathcal{N}$ the nest algebra associated to $\mathcal{N}$. We show that a bijective map $\Phi : S^a(H) \to S^a(H)$ satisfying (1) $\Phi(ABA) = \Phi(A) \Phi(B) \Phi(A)$ for every pair of $A,B$, or (2) $\Phi(AB + BA) = \Phi(A) \Phi(B) + \Phi(B) \Phi(A)$ for every pair of $A,B$, or (3) $\Phi(\frac{1}{2} (AB + BA)) = \frac{1}{2} (\Phi(A) \Phi(B) + \Phi(B) \Phi(A))$ for every pair of $A,B$ must be additive, that is, a Jordan ring isomorphism. We also show that if a bijective map $\Phi : \mathrm{Alg}\mathcal{N} \to \mathrm{Alg}\mathcal{N}$ satisfies the Jordan multiplicativity of the form (2) or (3), then $\Phi$ must be a Jordan isomorphism. Moreover, such Jordan multiplicative maps are characterized completely.

Citation

Download Citation

Runling An. Jinchuan Hou. "ADDITIVITY OF JORDAN MULTIPLICATIVE MAPS ON JORDAN OPERATOR ALGEBRAS." Taiwanese J. Math. 10 (1) 45 - 64, 2006. https://doi.org/10.11650/twjm/1500403798

Information

Published: 2006
First available in Project Euclid: 18 July 2017

zbMATH: 1107.46047
MathSciNet: MR2186161
Digital Object Identifier: 10.11650/twjm/1500403798

Subjects:
Primary: 46C20 , 47B49

Keywords: automorphisms , ‎Hilbert spaces , Jordan product

Rights: Copyright © 2006 The Mathematical Society of the Republic of China

Vol.10 • No. 1 • 2006
Back to Top