Translator Disclaimer
2018 Non-linear $\lambda $-Jordan triple $\ast $-derivation on prime $\ast $-algebras
A. Taghavi, M. Nouri, M. Razeghi, V. Darvish
Rocky Mountain J. Math. 48(8): 2705-2716 (2018). DOI: 10.1216/RMJ-2018-48-8-2705

Abstract

Let $\mathcal {A}$ be a prime $\ast $-algebra and $\Phi $ a $\lambda $-Jordan triple derivation on $A$, that is, for every $A,B,C \in \mathcal {A}$, $$\Phi (A\diamond _{\lambda } B \diamond _{\lambda }C)=\Phi (A)\diamond _{\lambda }B\diamond _{\lambda } C+A\diamond _{\lambda }\Phi (B)\diamond _{\lambda }C+A\diamond _{\lambda } B\diamond _{\lambda }\Phi (C),$$ where $A\diamond _{\lambda } B = AB + \lambda BA^{\ast }$ such that a complex scalar $|\lambda |\neq 0,1$, and $\Phi $ is additive. Moreover, if $\Phi (I)$ is self-adjoint, then $\Phi $ is a $\ast $-derivation.

Citation

Download Citation

A. Taghavi. M. Nouri. M. Razeghi. V. Darvish. "Non-linear $\lambda $-Jordan triple $\ast $-derivation on prime $\ast $-algebras." Rocky Mountain J. Math. 48 (8) 2705 - 2716, 2018. https://doi.org/10.1216/RMJ-2018-48-8-2705

Information

Published: 2018
First available in Project Euclid: 30 December 2018

zbMATH: 06999281
MathSciNet: MR3895000
Digital Object Identifier: 10.1216/RMJ-2018-48-8-2705

Subjects:
Primary: 46J10, 46L10, 47B48

Rights: Copyright © 2018 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
12 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.48 • No. 8 • 2018
Back to Top