Open Access
2018 Maps preserving quasi-isometries on Hilbert $C^*$-modules
Alireza Majidi, Maryam Amyari
Rocky Mountain J. Math. 48(4): 1219-1229 (2018). DOI: 10.1216/RMJ-2018-48-4-1219

Abstract

Let $\mathcal {K}(\mathcal {H})$ be the $C^*$-algebra of compact op\-erators on a Hilbert space $\mathcal {H}$. Let $E$ be a Hilbert $\mathcal {K}(\mathcal {H})$-mod\-ule and $\mathcal {L}(E)$ the $C^*$-algebra of all adjointable maps on $E$. In this paper, we prove that, if $\varphi :\mathcal {L}(E)\to \mathcal {L}(E)$ is a unital surjective bounded linear map, which preserves quasi-isometries in both directions, then there are unitary oper\-ators $U, V\in \mathcal {L}(E)$ such that \[ \varphi (T)=UTV\quad \mbox {or}\quad \varphi (T)=UT^{tr }V \] for all $T\in \mathcal {L}(E)$, where $T^{tr }$ is the transpose of $T$ with re\-spect to an arbitrary but fixed orthonormal basis of $E$.

Citation

Download Citation

Alireza Majidi. Maryam Amyari. "Maps preserving quasi-isometries on Hilbert $C^*$-modules." Rocky Mountain J. Math. 48 (4) 1219 - 1229, 2018. https://doi.org/10.1216/RMJ-2018-48-4-1219

Information

Published: 2018
First available in Project Euclid: 30 September 2018

zbMATH: 06958777
MathSciNet: MR3859756
Digital Object Identifier: 10.1216/RMJ-2018-48-4-1219

Subjects:
Primary: 46L05 , 46L08

Keywords: $C^*$-algebra , Hilbert $C^*$-module , preserving linear map , quasi-isometry

Rights: Copyright © 2018 Rocky Mountain Mathematics Consortium

Vol.48 • No. 4 • 2018
Back to Top