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MAPS PRESERVING QUASI-ISOMETRIES
ON HILBERT C∗-MODULES

ALIREZA MAJIDI AND MARYAM AMYARI

ABSTRACT. Let K(H) be the C∗-algebra of compact op-
erators on a Hilbert space H. Let E be a Hilbert K(H)-
module and L(E) the C∗-algebra of all adjointable maps
on E. In this paper, we prove that, if φ : L(E) → L(E)
is a unital surjective bounded linear map, which preserves
quasi-isometries in both directions, then there are unitary
operators U, V ∈ L(E) such that

φ(T ) = UTV or φ(T ) = UT trV

for all T ∈ L(E), where T tr is the transpose of T with
respect to an arbitrary but fixed orthonormal basis of E.

1. Introduction. Let A be a C∗-algebra. A (right) inner-product
A-module is a linear space E, which is a right A-module and λ(xa) =
(λx)a = x(λa) for all x ∈ E, a ∈ A, λ ∈ C, together with an inner
product ⟨·, ·⟩ : E × E → A satisfying the following conditions:

(i) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0,
(ii) ⟨x, λy + z⟩ = λ⟨x, y⟩+ ⟨x, z⟩,
(iii) ⟨x, ya⟩ = ⟨x, y⟩a,
(iv) ⟨x, y⟩∗ = ⟨y, x⟩

for all x, y, z ∈ E, a ∈ A and λ ∈ C. A Hilbert A-module (Hilbert
C∗-module) is an inner product A-module E which is complete under
the norm ∥x∥ = ∥⟨x, x⟩∥1/2. Let E be a Hilbert A-module. A map
T : E → E is called adjointable if there is a map T ∗ : E → E such that
⟨Tx, y⟩ = ⟨x, T ∗y⟩ for all x, y ∈ E. It is easy to see that T must be A-
linear (i.e., T (xa) = T (x)a for all x ∈ E and a ∈ A) and bounded [11,
page 8]. The set of all adjointable maps is denoted by L(E), which is
a C∗-algebra. For every pair of vectors x, y ∈ E, we use θx,y to denote
the rank 1 linear operator on E, defined by θx,y(z) = x⟨y, z⟩ for any
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z ∈ E. The closed linear subspace of L(E) spanned by {θx,y : x, y ∈ E}
is denoted by K(E). In fact, K(E) is a closed ideal of L(E) and is called
the algebra of “compact” operators.

Definition 1.1 ([15]). If T ∈ L(E) and T ∗2T 2 = T ∗T , then it is called
a quasi-isometry.

Recall that, if (E, ⟨·, ·⟩) is a Hilbert A-module and K is a nonzero
positive invertible element of L(E), we define ⟨x, y⟩K = ⟨Kx, y⟩ for
each x, y ∈ E. Then, ⟨·, ·⟩K becomes an inner product on E, and
EK = (E, ⟨·, ·⟩K) becomes a Hilbert A-module, see [2].

If T ∗ is the adjoint of T with respect to the inner product ⟨·, ·⟩, then
T ♯ = K−1T ∗K is the K-adjoint of T with respect to the inner product
⟨·, ·⟩K since

⟨Tx, y⟩K = ⟨KTx, y⟩ = ⟨Tx,Ky⟩ = ⟨x, T ∗Ky⟩ = ⟨x,KK−1T ∗Ky⟩
= ⟨Kx,K−1T ∗Ky⟩ = ⟨x,K−1T ∗Ky⟩K

for each x, y ∈ E. It is easy to see that ♯ is an involution on L(E). We
say that S ∈ L(E) is K-self-adjoint if K−1S∗K = S, i.e., S♯ = S. The
set of all adjointable linear operators on E with respect to the inner
product ⟨·, ·⟩K is the same as L(E, ⟨·, ·⟩).

Definition 1.2. An operator T ∈ L(E) is called a K-quasi-isometry if

T ♯2T 2 = T ♯T . It is called K-unitary if UK−1U∗K = K−1U∗KU = I.

Utilizing [10, page 47] and [13, page 158], the next lemma is
apparent.

Lemma 1.3. Suppose that A is a C∗-algebra. Then, the following
conditions are equivalent :

(i) For all a, b ∈ A, aAb = {0} implies a = 0 or b = 0.
(ii) For all ideals I and J of A, IJ = {0} implies I = {0} or

J = {0}.
(iii) For all closed ideals I and J of A, IJ = {0} implies I = {0}

or J = {0}.

Recall that a C∗-algebra is said to be prime if it satisfies one of the
conditions of Lemma 1.3. In particular, it shows that topological and
algebraic primeness are equivalent in the setting of C∗-algebras.
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The Gelfand-Naimark theorem states that an arbitrary C∗-algebra
A has a representation ψ : A → B(H) for some Hilbert space H. We
know that ψ is a ∗-homomorphism. If ψ is one-to-one, then it is called a
faithful representation. A representation ψ : A → B(H) of a C∗-algebra
A is irreducible if the closed vector subspaces of H, being ψ-invariant,
are only {0} and H. A C∗-algebra A is primitive if its zero ideal is
primitive, that is, ifA has a faithful non-zero irreducible representation.
IfH is a nonzero Hilbert space, then the identity representation ofB(H)
on H is irreducible by [13, page 158], and B(H) is primitive.

Theorem 1.4. ([13, Theorem 5.4.5]). Any primitive C∗-algebra is a
prime C∗-algebra.

A linear map φ from a C∗-algebra A into a C∗-algebra B is called
a ∗-Jordan homomorphism if φ(a2) = φ(a)2 and φ(a∗) = φ(a)∗ for
every a ∈ A. A well-known result of Herstein [10, Theorem 3.1] states
that a ∗-Jordan homomorphism onto a prime C∗-algebra is either a
∗-homomorphism or a ∗-anti-homomorphism.

Suppose that X and Y are linear spaces and φ : X → Y is a map.
We say that φ is a preserving map in both directions whenever

x ∈ X has the property p⇐⇒ φ(x) ∈ Y has the property p.

Linear preserver problems appear in many areas of mathematics, espe-
cially in matrix theory and operator theory. These problems are often
studied as the form of linear maps preserving some properties in Banach
algebras or other linear spaces. Many mathematicians have investigated
several linear preserver problems, see [1, 3, 6, 7, 9, 12, 14, 16].

Suppose that E is a Hilbert A-module. We assume that X = Y =
L(E) and characterize surjective continuous linear maps φ : L(E) →
L(E), which preserve quasi-isometries in both directions.

2. Linear maps that preserve quasi-isometries. In this section,
we intend to characterize unital surjective linear maps from L(E) onto
itself which preserve quasi-isometries. We need the following well-
known theorem.

Theorem 2.1 ([12, page 208]). Suppose that H is a Hilbert space. If
φ : B(H) → B(H) is a surjective linear isometry, then there are unitary
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operators U and V in B(H) such that φ is either of the form

φ(T ) = UTV,

or of the form
φ(T ) = UT trV

for each T ∈ B(H), where T tr is the transpose of T with respect to an
arbitrary but fixed orthonormal basis of H.

Suppose that H is a Hilbert space and K(H) is the set of all compact
operators on H. Bakić and Guljaš [5] discussed the concept of an
orthonormal basis for Hilbert C∗-modules and proved that each Hilbert
C∗-module E over the C∗-algebra K(H) possesses an orthonormal
basis.

If eK(H)e = Ce, where e ∈ K(H) is a projection, then it is called a
minimal projection. Suppose that e0 ∈ K(H) is a minimal projection
and Ee0 = {xe0 : x ∈ E}. From [5, Remark 4], Ee0 is an invariant
subspace for all K(H)-linear operators on E, and Ee0 is a Hilbert space
with respect to the inner product (xe0, ye0) = tr(⟨xe0, ye0⟩) for all
x, y ∈ E, where tr denotes the usual trace. In addition, there exists an
orthonormal basis (νλ)λ∈I for E such that ⟨νλ, νλ⟩ = e0 for all λ ∈ I.
By Fourier expansion, νλ = νλ⟨νλ, νλ⟩ = νλe0 for all λ ∈ I; hence,
νλ ∈ Ee0 . In fact (νλ)λ∈I is an orthonormal basis for the Hilbert
space Ee0 . Therefore, Ee0 contains an orthonormal basis for E. This
implies that Ee0 as a submodule of E contains a dense submodule of
E generated by (νλ)λ∈I . Thus, Ee0 is dense in E.

Theorem 2.2 ([5, Theorem 5]). Let E be a Hilbert K(H)-module and
e0 a minimal projection in K(H). Then, the map ψ : L(E) → B(Ee0)
defined by ψ(T ) = T |Ee0

is a ∗-isomorphism of C∗- algebras.

From [5, Theorem 6], T is a compact operator in K(E) if and only if
ψ(T ) = T |Ee0

is a compact operator on Hilbert space Ee0 . Therefore,
φ : K(E) → K(Ee0), defined by ψ(T ) = T |Ee0

, is a ∗-isomorphism. The
above statements are true for the map ϕ : L(E) → B(Ee0) defined by
ϕ(T ) = T ∗|Ee0

as a ∗-anti-isomorphism.

Corollary 2.3. Let H be a Hilbert space, E a Hilbert K(H)-module
and e0 a minimal projection in K(H). Then, the C∗-algebra L(E) is
prime.
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Proof. Since Ee0 is a Hilbert space, B(Ee0) is primitive. From Theo-
rem 2.2, we deduce that L(E) is primitive, whence, from Theorem 1.4,
we conclude that L(E) is prime. �

Proposition 2.4. Let E be a Hilbert K(H)-module and φ : L(E) →
L(E) a ∗-isomorphism or a ∗-anti-isomorphism. Then, there are uni-
tary operators U, V ∈ L(E) such that

φ(T ) = UTV or φ(T ) = UT trV

for all T ∈ L(E), where T tr is the transpose of T with respect to an
arbitrary but fixed orthonormal basis of E.

Proof. The proof is similar to that of [4, Main theorem]. From
Theorem 2.2, the map ψ : L(E) → B(Ee0) defined by ψ(T ) = T |Ee0

,

is a ∗-isomorphism or the map ϕ : L(E) → B(Ee0), defined by ϕ(T ) =
T ∗|Ee0

, a ∗-anti-isomorphism of C∗-algebras. Consider the linear op-

erator Φ : B(Ee0) → B(Ee0) given by Φ = ψφψ−1 or Φ = ψφϕ−1.
Clearly, Φ is a ∗-isomorphism or a ∗-anti-isomorphism, respectively;
thus, it is surjective and an isometry. From Theorem 2.1, there
are unitary operators u, v on Ee0 such that Φ is either of the form
Φ(S) = uSv or of the form Φ(S) = uStrv, where S ∈ B(Ee0), and S

tr

is the transpose of S with respect to an arbitrary but fixed orthonormal
basis of Ee0 . �

Corollary 2.5. Let E be a Hilbert K(H)-module, and let φ : L(E) →
L(E) be a ♯-isomorphism. Then, there are K-unitary operators U, V ∈
L(E) such that either

φ(T ) = UTV or φ(T ) = UT trV

for all T ∈ L(E), where T tr is the transpose of T with respect to an ar-
bitrary but fixed orthonormal basis of E.

In order to achieve our next result, we utilize the strategy of [9].

Theorem 2.6. Let H be a Hilbert space, E a Hilbert K(H)-module,
and let φ : L(E) → L(E) be a unital surjective bounded linear map. If
φ preserves quasi-isometries in both directions, then there are unitary
operators U, V ∈ L(E) such that

φ(T ) = UTV or φ(T ) = UT trV,
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where T tr is the transpose of T with respect to an arbitrary but fixed
orthonormal basis of E.

Proof. Choose a self-adjoint operator S in L(E). Then, exp(itS)∗ =
exp(−itS) for each t ∈ R. Clearly, exp(itS)∗2 exp(itS)2 = exp(itS)∗

exp(itS). Therefore,

φ(exp(itS))∗2φ(exp(itS))2 = φ(exp(itS))∗φ(exp(itS)).

Thus,

φ

(
I + itS +

(it)2

2!
S2 + · · ·

)∗2

φ

(
I + itS +

(it)2

2!
S2 + · · ·

)2

= φ

(
I + itS +

(it)2

2!
S2 + · · ·

)∗

φ

(
I + itS +

(it)2

2!
S2 + · · ·

)
.

Hence,(
I − itφ(S)∗ − t2

2
φ(S2)∗ + · · ·

)2(
I + itφ(S)− t2

2
φ(S2) + · · ·

)2

=

(
I − itφ(S)∗ − t2

2
φ(S2)∗ + · · ·

)(
I + itφ(S)− t2

2
φ(S2) + · · ·

)
;

thus,

I + 2it(φ(S)− φ(S)∗) + t2(4φ(S)∗φ(S)− φ(S2)− φ(S)2

− φ(S2)∗ − φ(S)∗2) + · · ·

= I+ it(φ(S)−φ(S)∗)+t2
(
φ(S)∗φ(S)− 1

2
φ(S2)− 1

2
φ(S2)∗

)
+ · · · .

It follows that

(2.1) φ(S) = φ(S)∗

and

(2.2) 4φ(S)∗φ(S)− φ(S2)− φ(S)2 − φ(S2)∗ − φ(S)∗2

= φ(S)∗φ(S)− 1

2
φ(S2)− 1

2
φ(S2)∗

for every self-adjoint operator S ∈ L(E). By (2.1), (2.2) and similar to
[9, Proof of Theorem 3.3.], for every T ∈ L(E), we have:



MAPS PRESERVING QUASI-ISOMETRIES 1225

(i) φ(T ∗) = φ(T )∗;
(ii) φ(T 2) = φ(T )2.

Therefore, φ is a ∗-Jordan homomorphism. It is well known that every
∗-Jordan homomorphism onto a prime C∗-algebra is a ∗-homomorphism
or a ∗-anti-homomorphism. Since L(E) is a prime C∗-algebra, φ is a
∗-homomorphism or a ∗-anti-homomorphism.

Now, we show that φ is injective. Let S ∈ L(E) be self-adjoint and
φ(S) = 0. Then, φ(S + I) = I and φ(S − I) = −I since φ(I) = I.
Clearly, I and −I are quasi-isometries and, since φ preserves quasi-
isometries in both directions, S+I and S−I are quasi-isometries; thus,
2S4 + 10S2 = 0 and 2S3 + S = 0. Therefore, S = 0. Let T ∈ L(E) be
an arbitrary element and φ(T ) = 0. There exist self-adjoint operators
S1, S2 ∈ L(E) such that T = S1 + iS2 and

φ(S1) + iφ(S2) = φ(T ) = 0 = φ(T )∗ = φ(S1)− iφ(S2).

Thus, φ(S1) = 0 and φ(S2) = 0; hence, S1 = S2 = 0. Therefore,
T = 0, which implies that φ is injective. Since φ is injective, it is a
∗-automorphism or a ∗-anti-automorphism. By Proposition 2.4, the
proof is complete. �

Now, we want to give a form for an operator that preserves K-quasi-
isometries in both directions.

Corollary 2.7. Let H be a Hilbert space, E a K(H)-module and

φ : L(E) −→ L(E)

a unital surjective bounded linear map. If φ preserves K-quasi-
isometries in both directions, then there are K-unitary operators U, V ∈
L(E) such that either

φ(T ) = UTV or φ(T ) = UT trV

for all T ∈ L(E), where T tr is the transpose of T with respect to an
arbitrary but fixed orthonormal basis of E.

In Corollary 2.7, if V = U−1, then φ(T ) = UTU−1 or φ(T ) =
UT trU−1.

UT ♯U−1 = (UTU−1)♯ (φ(T ♯) = φ(T )♯)

= (U ♯)−1T ♯U ♯.
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Straightforward computation shows that

U∗KUK−1T ∗ = T ∗U∗KUK−1

for each T ∗ ∈ L(E). Hence, U∗KUK−1 ∈ Z (L(E)). We know that
Z (L(E)) = {λI : λ ∈ C}. Therefore, there is a λ ∈ C such that
U∗KUK−1 = λI. It follows that

U ♯U = λI.

Moreover, U is invertible, so UU ♯ = λI. On the other hand, the oper-
ator UU ♯ is K-self-adjoint. Then, λ = ±1.

Corollary 2.8. Let H be a Hilbert space, E a Hilbert K(H)-module and
φ : L(E) → L(E) a unital surjective bounded linear map. If φ preserves
K-quasi-isometries in both directions, then there exist λ = ±1 and a
K-unitary operator U ∈ L(E) satisfying UU ♯ = U ♯U = λI such that

φ(T ) = λUTU−1 or φ(T ) = λUT trU−1,

where T tr is the transpose of T with respect to an arbitrary but fixed
orthonormal basis of E.

Now, we give an example that shows the process of structure of φ.

Example 2.9. Suppose that H = C2. Then,

K(H) =

{[
a11 a12
a21 a22

]
; aij ∈ C, i, j ∈ {1, 2}

}
.

Consider E = K(H) as a Hilbert K(H)-module with inner product
⟨A,B⟩ = A∗B, where A∗ is the conjugate transpose of A. Set

e0 =

[
1 0
0 0

]
∈ K(H)

and

(νλ)λ∈{0,1} =

{
ν1 =

[
1 0
0 0

]
, ν2 =

[
0 0
1 0

]}
.

We have the following assertions:
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(i) e0 is a minimal projection, since

e0K(H)e0 =

{
e0

[
a11 a12
a21 a22

]
e0; aij ∈ C, i, j ∈ {1, 2}

}
=

{[
a11 0
0 0

]
; a11 ∈ C

}
= {e0a11; a11 ∈ C}.

Also, e∗0 = e0 and e20 = e0.

(ii) For each

A =

[
a11 a12
a21 a22

]
∈ E,

we have

2∑
λ=1

νλ⟨νλ, A⟩ = ν1ν
∗
1A+ ν2ν

∗
2A =

[
1 0
0 0

]
A+

[
0 0
0 1

]
A =

[
a11 a12
0 0

]
+

[
0 0
a21 a22

]
= A,

and, since

⟨νλ, νµ⟩ =
[
0 0
0 0

]
for λ ̸= µ

and ⟨νλ, νλ⟩ = e0 for each λ ∈ {0, 1}, by [5, Theorem 1], the
orthonormal system (νλ)λ∈{0,1} is an orthonormal basis for E.

(iii)

Ee0 = {xe0; x ∈ E} =

{[
a11 a12
a21 a22

] [
1 0
0 0

]
; aij ∈ C

}
=

{[
a11 0
a21 0

]
; a11, a21 ∈ C

}
.

For each

A =

[
a11 0
a21 0

]
in Ee0 ,

we define ||A||2 = |a11|2 + |a21|2, so that Ee0 with the inner product
(A,B) = tr(⟨A,B⟩) is a Hilbert space, where A,B ∈ Ee0 . Indeed,
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(A,A) = tr(⟨A,A⟩) = tr(A∗A) = tr

([
a11 a21
0 0

] [
a11 0
a21 0

])
= tr

([
a11a11 + a21a21 0

0 0

])
= |a11|2 + |a21|2 = ||A||2.

(iv) Clearly, ⟨νλ, νλ⟩ = e0, νλ = νλe0 for each λ ∈ {0, 1}. Therefore,
by [5, Remark 4], (νλ)λ∈{0,1} ∈ Ee0 is an orthonormal basis for Ee0 ,
too. Thus, Ee0 is a dense submodule for E.

Suppose that φ : L(E) → L(E) is an arbitrary unital surjective
bounded linear map that preserves quasi-isometries in both directions.
From Theorem 2.1, for each T ∈ B(Ee0), we have φ(T ) = uT ∗v or
φ(T ) = uT ∗ trv, for some unitary operators u, v ∈ B(Ee0).

Suppose that

A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
are the corresponding matrices of u, v, respectively, where A,B are uni-
tary matrices. Define U(x) =

∑
λ∈Iu(νλ)⟨νλ, x⟩, V (x) =

∑
λ∈I v(νλ)×

⟨νλ, x⟩ for each x ∈ E and I = {0, 1}. Thus, U(x) =
∑

λ∈Iu(νλ)⟨νλ, x⟩
=

∑
λ∈I Aνλν

∗
λx for each x ∈ E. Hence,

U =
∑
λ∈I

Aνλν
∗
λ = Aν1ν

∗
1 +Aν2ν

∗
2

=

[
a11 a12
a21 a22

] [
1 0
0 0

]
+

[
a11 a12
a21 a22

] [
0 0
0 1

]
=

[
a11 0
a21 0

]
+

[
0 a12
0 a22

]
= A.

Similarly, we have V = B. Indeed, U, V are the extent of u, v on E,
respectively. Therefore, by (iv), for each T ∈ L(E), we have φ(T )
= UTV or UT trV .
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