Translator Disclaimer
2018 Eigenvalues for systems of fractional $p$-Laplacians
Leandro M. Del Pezzo, Julio D. Rossi
Rocky Mountain J. Math. 48(4): 1077-1104 (2018). DOI: 10.1216/RMJ-2018-48-4-1077

Abstract

We study the eigenvalue problem for a system of fractional $p$-Laplacians, that is, \begin{equation} \begin{cases} (-\Delta _p)^r u = \lambda \tfrac {\alpha }p|u|^{\alpha -2}u|v|^{\beta } &\mbox{in } \Omega ,\\ (-\Delta _p)^s v = \lambda \tfrac {\beta }p|u|^{\alpha }|v|^{\beta -2}v &\mbox{in } \Omega ,\\ u=v=0 &\mbox{in } \Omega ^c=\mathbb{R} ^N\setminus \Omega. \end{cases} \end{equation} We show that there is a first (smallest) eigenvalue that is simple and has associated eigenpairs composed of positive and bounded functions. Moreover, there is a sequence of eigenvalues $\lambda _n$ such that $\lambda _n\to \infty $ as $n\to \infty $.

In addition, we study the limit as $p\to \infty $ of the first eigenvalue, $\lambda _{1,p}$, and we obtain $[\lambda _{1,p}]^{{1}/{p}}\to \Lambda _{1,\infty }$ as $p\to \infty ,$ where $$\Lambda _{1,\infty }= \inf _{(u,v)} \bigg \{\frac {\max \{ [u]_{r,\infty } ; [v]_{s,\infty } \} }{ \| |u|^{\Gamma } |v|^{1-\Gamma } \|_{L^\infty (\Omega )}}\bigg \} = \bigg [ \frac {1}{R(\Omega )} \bigg ]^{ (1-\Gamma ) s + \Gamma r }. $$ Here, $$R(\Omega ):=\max _{x\in \Omega }dist (x,\partial \Omega )\mbox { and } [w]_{t,\infty } := \!\sup _{(x,y)\in \overline {\Omega }} \frac {| w(y) - w(x)|}{|x-y|^{t}}.$$

Finally, we identify a PDE problem satisfied, in the viscosity sense, by any possible uniform limit along subsequences of the eigenpairs.

Citation

Download Citation

Leandro M. Del Pezzo. Julio D. Rossi. "Eigenvalues for systems of fractional $p$-Laplacians." Rocky Mountain J. Math. 48 (4) 1077 - 1104, 2018. https://doi.org/10.1216/RMJ-2018-48-4-1077

Information

Published: 2018
First available in Project Euclid: 30 September 2018

zbMATH: 06958770
MathSciNet: MR3859749
Digital Object Identifier: 10.1216/RMJ-2018-48-4-1077

Subjects:
Primary: 35P30, 35R11, 45G05, 47G20

Rights: Copyright © 2018 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
28 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.48 • No. 4 • 2018
Back to Top