Open Access
2017 Some finite generalizations of Gauss's square exponent identity
Ji-Cai Liu
Rocky Mountain J. Math. 47(8): 2723-2730 (2017). DOI: 10.1216/RMJ-2017-47-8-2723

Abstract

We obtain three finite generalizations of Gauss's square exponent identity. For example, we prove that, for any non-negative integer $m$, \[ \sum _{k=-m}^{m}(-1)^k \left [{3m-k+1}\atop {m+k}\right ] (-q;q)_{m-k}q^{k^2}=1, \] where \[ \left [{\vphantom {3}n}\atop {\vphantom {k}m}\right ] =\prod _{k=1}^m\frac {1-q^{n-k+1}}{1-q^k} \quad \mbox {and}\quad (a;q)_n=\prod _{k=0}^{n-1}(1-aq^k). \] These identities reduce to Gauss's famous identity $$\sum _{k=-\infty }^{\infty }(-1)^kq^{k^2}=\frac {(q;q)_{\infty }}{(-q;q)_{\infty }}$$ by letting $m\to \infty $.

Citation

Download Citation

Ji-Cai Liu. "Some finite generalizations of Gauss's square exponent identity." Rocky Mountain J. Math. 47 (8) 2723 - 2730, 2017. https://doi.org/10.1216/RMJ-2017-47-8-2723

Information

Published: 2017
First available in Project Euclid: 3 February 2018

zbMATH: 06840997
MathSciNet: MR3760315
Digital Object Identifier: 10.1216/RMJ-2017-47-8-2723

Subjects:
Primary: 11B65
Secondary: 33D15

Keywords: $q$-binomial coefficients , Gauss's identity , pentagonal number theorem

Rights: Copyright © 2017 Rocky Mountain Mathematics Consortium

Vol.47 • No. 8 • 2017
Back to Top