Open Access
2014 Rational linear spaces on hypersurfaces over quasi-algebraically closed fields
Todd Cochrane, Craig V. Spencer, Hee-Sung Yang
Rocky Mountain J. Math. 44(6): 1805-1816 (2014). DOI: 10.1216/RMJ-2014-44-6-1805

Abstract

Let $k=\mathbb{F}_q(t)$ be the rational function field over $\mathbb{F}_q$ and $f(\mathbf{x}) \in k[x_1, \ldots, x_s]$ be a form of degree~$d$. For $l \in \mathbb{N}$, we establish that whenever \[ s > l + \sum_{w=1}^{d} w^2 \binom{d-w+l-1}{l-1}, \] the projective hypersurface $f(\mathbf{x})=0$ contains a $k$-rational linear space of projective dimension~$l$. We also show that if $s> 1+ d(d+1)(2d+1)/6$, then for any $k$-rational zero $\mathbf{a}$ of $f(\mathbf{x})$ there are infinitely many $s$-tuples $(\varpi_1, \ldots, \varpi_s)$ of monic irreducible polynomials over $k$, with the $\varpi_i$ not all equal, and $f(a_1\varpi_1, \ldots, a_s \varpi_s) =0$. We establish in fact more general results of the above type for systems of forms over $C_i$-fields.

Citation

Download Citation

Todd Cochrane. Craig V. Spencer. Hee-Sung Yang. "Rational linear spaces on hypersurfaces over quasi-algebraically closed fields." Rocky Mountain J. Math. 44 (6) 1805 - 1816, 2014. https://doi.org/10.1216/RMJ-2014-44-6-1805

Information

Published: 2014
First available in Project Euclid: 2 February 2015

zbMATH: 1375.11033
MathSciNet: MR3310949
Digital Object Identifier: 10.1216/RMJ-2014-44-6-1805

Subjects:
Primary: 11D72 , 11T55 , 12F20

Keywords: Diophantine equations , function fields , quasi-algebraic closure

Rights: Copyright © 2014 Rocky Mountain Mathematics Consortium

Vol.44 • No. 6 • 2014
Back to Top