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RATIONAL LINEAR SPACES ON HYPERSURFACES
OVER QUASI-ALGEBRAICALLY CLOSED FIELDS

TODD COCHRANE, CRAIG V. SPENCER AND HEE-SUNG YANG

ABSTRACT. Let k = Fq(t) be the rational function field
over Fq and f(x) ∈ k[x1, . . . , xs] be a form of degree d. For
l ∈ N, we establish that whenever

s > l +

d∑
w=1

w2
(d− w + l − 1

l− 1

)
,

the projective hypersurface f(x) = 0 contains a k-rational
linear space of projective dimension l. We also show that
if s > 1 + d(d + 1)(2d + 1)/6, then for any k-rational zero
a of f(x) there are infinitely many s-tuples (ϖ1, . . . , ϖs) of
monic irreducible polynomials over k, with the ϖi not all
equal, and f(a1ϖ1, . . . , asϖs) = 0. We establish in fact more
general results of the above type for systems of forms over
Ci-fields.

1. Introduction. In 1957, Birch [2] proved that any system of odd-
degree forms over the rational numbers Q possesses a solution set
containing a Q-rational linear space of projective dimension l provided
that the system has sufficiently many variables in terms of the number
of forms, the degrees of the forms, and l. Much work has been put into
establishing bounds for the particular case of systems of cubic forms
(see, for instance, [7, 8, 14, 20]). However, it was not until 1998 when
Wooley [19] provided the first explicit bounds for the general problem.
More recently, Dietmann [6] proved the following result for a single
odd-degree form.
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Theorem 1.1. Let f(x1, . . . , xs) ∈ Q[x1, . . . , xs] be a non-singular
form of odd degree d. Let l ∈ N and

s ≥ 21+(5+2d−1)dd!d2
d+1(l + 1)d(1+2d−1).

Then, there exists a projective l-dimensional Q-rational linear space of
solutions to the hypersurface f(x1, . . . , xs) = 0.

One anticipates that similar conclusions are available when Q is
replaced by the rational function field Fq(t). In this paper, we not
only show that such results may be obtained, but we are able to prove
substantially sharper conclusions with relatively simple proofs. It is
our hope that the quantitative results for Fq(t) may shed light on what
is to be expected in the classical case of Q. The following theorem is a
direct consequence of Theorem 3.1, where a similar statement is given
in the more general setting of Ci-fields.

Theorem 1.2. Suppose that, for 1 ≤ j ≤ r, the form fj(x) ∈
Fq(t)[x1, . . . , xs] is of degree dj. Then, provided that

s >

{
l +

∑r
j=1

∑dj

w=1 w
2
(
dj−w+l−1

l−1

)
when l > 0,∑r

j=1 d
2
j when l = 0,

the set of solutions of the system

(1.1) fj(x) = 0 (1 ≤ j ≤ r)

contains a k-rational linear space of projective dimension l.

By combining Theorem 1.2, the Green-Tao theorem for Fq[t] due to
Lê [10], and the argument from [3] due to Brüdern, Dietmann, Liu
and Wooley, one can prove the following result.

Theorem 1.3. Suppose that, for 1 ≤ j ≤ r, the form fj(x) ∈
Fq(t)[x1, . . . , xs] is of degree dj and that

(1.2) s > 1 +
r∑

j=1

dj(dj + 1)(2dj + 1)

6
.

Then, for any solution a = (a1, . . . , as) ∈ Fq(t)
s of (1.1) there exist

infinitely many s-tuples (ϖ1, . . . , ϖs) of monic irreducible polynomials
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in Fq(t) with ϖ1, . . . , ϖs not all equal, such that

(1.3) fj(a1ϖ1, a2ϖ2, . . . , asϖs) = 0, 1 ≤ j ≤ r.

Remark 1.4. Under assumption (1.2), the hypothesis of Theorem 1.2
is satisfied with l = 1, and thus the system (1.1) is guaranteed to have
a projective line of solutions.

Remark 1.5. The theorem is not true for arbitrary vectors a. For
example, let π1, . . . , πs be distinct monic irreducible polynomials, P =
π1 · · ·πs, Pi = (P/πi)

d+1 (1 ≤ i ≤ s), and f(x) = P1x
d
1 + · · · + Psx

d
s .

Any solution x ∈ Fq[t]
s to the equation f(x) = 0 must satisfy π2

l |xl for
1 ≤ l ≤ s. Thus, (1.3) has no solution if a is a vector of constants from
Fq.

Remark 1.6. The conclusion of the theorem is trivially true for any
solution a of (1.1) having some coordinate equal to zero. In this case,
one can simply let the ϖu for this coordinate position be arbitrary and
set the remaining ϖu equal to each other. However, one can prove the
following variation of Theorem 1.3 that avoids such trivial solutions.

Theorem 1.7. Given any projective line of solutions of a homogeneous
system of equations (1.1) in any number of variables, there exists a non-
trivial point a on this line such that there are infinitely many s-tuples
of monic irreducible polynomials (ϖ1, . . . , ϖs) satisfying (1.3) with the
property that in the coordinate positions where au ̸= 0, not all of the
ϖu are equal.

The proofs of Theorem 1.3 and Theorem 1.7 are given in Section 4.

2. Quasi-algebraically closed fields. We begin by introducing
some notation. Let k be a field. We say that a zero of a polynomial in
several variables is non-trivial when it has a non-zero coordinate. We
refer to a homogeneous polynomial as a form, and we call a polynomial
having zero constant term a Chevalley polynomial. The set of zeros
of a form (or system of forms) may be regarded as either a subset
of affine space ks or projective space Ps−1(k). Moreover any linear
subspace of ks of dimension m corresponds to a linear subspace of
Ps−1(k) of dimension m − 1. Associated to k is the polynomial ring
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k[t] and the field of fractions k(t). We recall that a field k is called
quasi-algebraically closed if every non-constant form over k, having a
number of variables exceeding its degree, possesses a non-trivial zero.
In this context we recall the language of Lang [9]. We say that k is a
Ci-field when any form of positive degree d lying in k[x], having more
than di variables, necessarily possesses a non-trivial k-rational zero.
Thus, quasi-algebraically closed fields are C1-fields. We say that k is
a strongly Ci-field when any Chevalley polynomial of positive degree
d lying in k[x], having more than di variables, necessarily possesses
a non-trivial k-rational zero. In this terminology, algebraically closed
fields such as C are strongly C0-fields, and from the Chevalley-Warning
theorem (see [4] and [18]) it follows that the finite field Fq in q elements
is a strongly C1-field. Work of Lang [9] and Nagata [15], moreover,
shows that algebraic extensions of (strongly) Ci-fields are (strongly) Ci,
and that a transcendental extension, of transcendence degree j, over a
(strongly) Ci-field is (strongly) Ci+j . In particular, Fq(t) is a strongly
C2-field.

We say that a form Ψ(x) ∈ k[x1, . . . , xs] is normic when it satisfies
the property that the equation Ψ(x) = 0 has only the trivial solution
x = 0. When such is the case, and the form Ψ(x) has degree d and
contains di variables, then we say that Ψ is normic of order i. Plainly,
when k is a Ci-field, any normic form Ψ(x) of degree d can have at
most di variables. We note also that when k = Fq, then for each
natural number d there exist normic forms of degree d in d variables,
and therefore of order 1. In order to exhibit such a form, consider a
field extension L of Fq of degree d, and examine the norm form Ψ(x)
defined by considering the norm map from L to Fq with respect to a
coordinate basis for the field extension of L over Fq. Similarly, there are
normic forms of order 2 over Fq(t) of each positive degree. Namely, if
Ψ(x) : Fd

q → Fq is a normic form of order 1 and degree d, by extending

the domain of Ψ to Fq(t) and considering the form Ψ̃ : Fq(t)
d2 → Fq(t)

defined by

Ψ̃(x) =
d−1∑
j=0

Ψ(xjd+1, . . . , xjd+d)t
j ,

one obtains a normic form of order 2 and degree d.

We recall two theorems on Ci-theory relevant to our subsequent
arguments.
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Theorem 2.1. Let k be a Ci-field, and suppose that for 1 ≤ j ≤ r, the
form gj(x) ∈ k[x1, . . . , xs] is of degree dj. Suppose also that there are
normic forms over k of order i of each positive degree. Then whenever

s >
r∑

j=1

dij ,

the system of equations gj(x) = 0 (1 ≤ j ≤ r) possesses a non-trivial
k-rational solution.

Proof. This is [9, Theorem 4] of Lang. �

Theorem 2.2. Let k be a strongly Ci-field, and suppose that for
1 ≤ j ≤ r, the Chevalley polynomial gj(x) ∈ k[x1, . . . , xs] is of degree
at most d. Suppose also that s > rdi. Then the system of equations
gj(x) = 0 (1 ≤ j ≤ r) possesses a non-trivial k-rational solution.

Proof. This is [15, Theorem 1b] of Nagata. �

3. Finding linear spaces of solutions via Ci-theory.

Theorem 3.1. Let k be a Ci-field, and suppose that, for 1 ≤ j ≤ r, the
form fj(x) ∈ k[x1, . . . , xs] is of degree dj. Suppose also that there are
normic forms over k of order i of each positive degree. Then, provided
that

(3.1) s >

{
l +

∑r
j=1

∑dj

w=1 w
i
(
dj−w+l−1

l−1

)
when l > 0,∑r

j=1 d
i
j when l = 0,

the system of equations fj(x) = 0 (1 ≤ j ≤ r) possesses a solution set
containing a k-rational linear space of projective dimension l.

Since Fq(t) is a C2-field with normic forms of order 2 for each positive
degree, we immediately deduce Theorem 1.2. Theorem 3.1 follows
readily from the work of Leep and Schmidt [13, equation (3.1)] and
Theorem 2.1. For the convenience of the reader, we give a proof here
that follows the same line of argument as in [13].

Proof. We prove the theorem by induction on l. When l = 0, the
theorem is equivalent to Theorem 2.1. Assume that m ∈ N and that
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the theorem holds when l = m− 1. We now establish that the theorem
holds when l = m. Suppose that

s > m+

r∑
j=1

dj∑
w=1

wi

(
dj − w +m− 1

m− 1

)
.

By noting that the right-hand-side of (3.1) is an increasing function of
l, we obtain from the induction assumption that the system fj(x) = 0
(1 ≤ j ≤ r) contains a k-rational linear space of solutions in affine
space of dimension m. By applying a linear change of variables, we
may assume that e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , em is a
basis for this subspace, that is, the forms fj are identically zero on km

when we set xm+1 = xm+2 = · · · = xs = 0. Thus, for 1 ≤ j ≤ r, we
can write
(3.2)

fj(x) =
∑

b1,...,bm∈Z≥0

b1+···+bm<dj

xb1
1 xb2

2 · · ·xbm
m fj;b(xm+1, . . . , xs) + gj(x1, . . . , xm)

where each fj;b(xm+1, . . . , xs) is a form of degree dj−b1−b2−· · ·−bm >
0 in s −m variables, and gj(x1, . . . , xm) is a form of degree dj that is
identically zero on km (although not necessarily the zero polynomial).

Note that, for 1 ≤ j ≤ r, by [16, Theorem 2.3], there are(
dj−w+m−1

m−1

)
choices of (b1, . . . , bm) ∈ (Z≥0)

m with b1+· · ·+bm = dj−w,

which would make fj;b(xm+1, . . . , xs) a degree-w form. By Theo-
rem 2.1, it follows that if

(3.3) s−m >
r∑

j=1

dj∑
w=1

wi

(
dj − w +m− 1

m− 1

)
,

we can find a non-trivial solution (xm+1, . . . , xs) to the system

fj;b(xm+1, . . . , xs) = 0 (1 ≤ j ≤ r, b1 + · · ·+ bm < dj).

Then, upon recalling (3.2) and the fact that gj is identically zero, we
see that

{(0, . . . , 0, xm+1, . . . , xs), e1, . . . , em}

is a basis of a projective m-dimensional k-rational linear space of
solutions for the system of forms fj(x) = 0 (1 ≤ j ≤ r). This completes
the proof of the theorem. �
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Remark 3.2. For algebraically closed fields (C0-fields) the inequality
in Theorem 3.1 simplifies to

(3.4) s > l +

r∑
j=1

(
dj + l − 1

l

)
,

for l ≥ 0, noting in the case l = 0 that
(
n
0

)
= 1 for any integer n. In the

case l = 0 the estimate is optimal, but for l > 0 we do not know how
sharp it is in general and suspect that one should be able to do better.
For r = 1 and d = 2, inequality (3.4) reads s > 2l + 1, and is optimal.
Indeed, any non-degenerate quadratic form in s = 2l + 1 variables can
only vanish on a linear subspace of projective dimension at most l− 1.

In certain cases, improvements are available. If r = 2, d1 = d2 = 2
and l ≥ 1, then inequality (3.4) reads s > 3l + 2, but in this case it
follows from a result of Amer [1, Satz 8] (for fields of characteristic
̸= 2) and Leep [12] (for any field), and the fact that, for algebraically
closed fields K, K(t) is a C1-field, that it suffices to take s > 2l + 2.
Moreover, this bound is optimal. If r = 1, d = 3 and l = 1, inequality
(3.4) reads s > 4, but in this case it is well known that s = 4 suffices
[17, subsection 1.6, Theorem 10].

Remark 3.3. For C1-fields, such as finite fields, the inequality of
Theorem 3.1 simplifies to

(3.5) s > l +

r∑
j=1

(
dj + l

l + 1

)
,

for l ≥ 0. For l = 0, this bound is sharp, but for l > 0, we expect
improvements to be available in general. For systems of quadratic forms
over Fq, the bound in (3.5) was given earlier by Leep [11, Corollary 2.4
(ii)] and by the first author [5, Lemma 3 (a)]. For a pair of quadratic
forms, it states that if s ≥ 3l+ 5, then the system vanishes on a linear
subspace of projective dimension l. However, in this case, it is known
[5, Lemma 3 (c)] that one only needs s ≥ 2l + 5.

For the case of a single form of degree d, the bound in (3.5) reads

s > l +

(
d+ l

l + 1

)
= l +

(
l + d

d− 1

)
=

1

(d− 1)!
ld−1 +Od(l

d−2),
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viewing the latter as a polynomial in l with d fixed. It was observed
in [5, Section 6] that, for d < q and s < (l + 1)d−1/d! there exists
a form of degree d over Fq in s variables not vanishing on any linear
subspace of projective dimension l. For the case of a cubic form this
was refined slightly by Dietmann [7, Lemma 6]. Thus, as a polynomial
in l, the optimal bound in this case is somewhere between ld−1/d! and
ld−1/(d− 1)! in the leading term. It would be nice to pin down the
discrepancy between these two values.

Remark 3.4. A closer examination of the proof of Theorem 3.1 reveals
a slightly stronger conclusion when l > 0. Under the hypotheses
of the theorem, if a is a given non-trivial solution of the system
f1(x) = · · · = fr(x) = 0, then in fact we obtain a k-rational linear
space of solutions of projective dimension l containing a. Indeed, the
constructive nature of the proof of the theorem shows that, given
an (m − 1)-dimensional subspace of solutions, there exists an m-
dimensional subspace containing the given subspace provided that the
number of variables is of the requisite size.

If we drop the hypothesis on k having normic forms of order i for each
positive degree and add the requirement that k is a strongly Ci-field,
we obtain the slightly weaker result of the next theorem.

Theorem 3.5. Let k be a strongly Ci-field, and suppose that, for
1 ≤ j ≤ r, the form fj(x) ∈ k[x1, . . . , xs] is of degree dj. Let
d = max1≤j≤r dj . Suppose that

s > l + di
r∑

j=1

(
dj + l − 1

l

)
.

Then, the system of equations fj(x) = 0 (1 ≤ j ≤ r) possesses a solu-
tion set containing a k-rational linear space of projective dimension l.

Proof. We mimic the proof of Theorem 3.1, applying Theorem 2.2
instead of Theorem 2.1. The inequality in (3.3) is replaced with

s−m > di
r∑

j=1

dj∑
w=1

(
dj − w +m− 1

m− 1

)
.
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The sum over w can be written as
∑m+dj−2

α=m−1

(
α

m−1

)
, and the theorem

follows upon applying the combinatorial identity [16, subsection 2.8,
Exercise 5]

γ∑
α=β

(
α

β

)
=

(
γ + 1

β + 1

)
. �

In particular, using
(
d+l−1

l

)
≤ dl, we see that it suffices to take

s > l + rdi+l in order to obtain a k-rational linear space of projective
dimension l.

4. Proofs of Theorem 1.3 and Theorem 1.7. Through the use of
an argument due to Brüdern, et al. [3], we will apply Theorem 1.2 and
the Green-Tao theorem for Fq[t] due to Lê [10] to obtain Theorem 1.3.
We recall that, for a subset A of the set of irreducible polynomials P
in Fq[t], the relative upper density, dP(A), of A in P is defined by

dP(A) = lim
N→∞

#{f ∈ A : deg(f) < N}
#{f ∈ P : deg(f) < N}

.

Theorem 4.1. [10, Theorem 2]. For any k > 0, there exist polynomi-
als f, g ∈ Fq[t], g ̸= 0, such that the polynomials f +Pg, where P runs
over all polynomials in Fq[t] of degree less than k, are all irreducible.
Furthermore, such configurations can be found in any set of positive
relative upper density among the irreducible polynomials.

Remark 4.2. In particular, as Lê notes, the set of monic irreducible
polynomials has positive upper density in P, and so we conclude that
there exist f, g, g ̸= 0, such that f + Pg is a monic irreducible
polynomial for all P of degree less than a given k. Moreover, by
repeated applications of the theorem, one can in fact obtain infinitely
many pairs (f, g) satisfying the conclusion of the theorem.

Proof of Theorem 1.3. Suppose that, for 1 ≤ j ≤ r, the form
fj(x) ∈ Fq(t)[x1, . . . , xs] is of degree dj . By Theorem 1.2 with l = 1
and Remark 3.4, given any non-trivial solution a ∈ Fq(t)

s of the system

(4.1) f1(x) = · · · = fr(x) = 0
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there exists a projective Fq(t)-rational line of solutions of (4.1) contain-
ing a, provided that

s > 1 +
r∑

j=1

dj∑
w=1

w2 = 1 +
r∑

j=1

dj(dj + 1)(2dj + 1)

6
.

By homogeneity, we may assume that a ∈ Fq[t]
s, and there exists

a vector b ∈ Fq[t]
s, with a and b linearly independent over Fq(t),

satisfying fj(αa+ βb) = 0 for all 1 ≤ j ≤ r and all α, β ∈ Fq[t].

If some coordinate of a is zero, then the theorem follows trivially.
Indeed, say a1 = 0, let ϖ1 and ϖ2 be any two distinct monic irreducible
polynomials in Fq[t], and set ϖ3 = ϖ4 = · · · = ϖs = ϖ2. Then

(a1ϖ1, a2ϖ2, . . . , asϖs) = (0, a2ϖ2, . . . , asϖ2) = ϖ2(a1, a2, . . . , as)

is a solution of (4.1) since a is a solution.

Next, suppose that au ̸= 0 for 1 ≤ u ≤ s. Let ã = a1 · · · as, and
put ãu = ã/au for 1 ≤ u ≤ s. Set M = max1≤u≤s deg (ãubu). By
Remark 4.2, there exist infinitely many pairs of nonzero polynomials
y, z ∈ Fq[t] for which the set {y + zw : deg (w) ≤ M} consists
entirely of monic irreducible polynomials. For any such pair (y, z),
define ϖu = y + zãubu for 1 ≤ u ≤ s. Since deg(ãubu) ≤ M , we
have that ϖu is a monic irreducible polynomial for 1 ≤ u ≤ s. Also,
auϖu = yau + (zã)bu for 1 ≤ u ≤ s. Therefore, the vector

(4.2) (a1ϖ1, . . . , asϖs) = ya+ (zã)b

is on our given projective line of solutions of (4.1). �

Proof of Theorem 1.7. Suppose that we are given a projective line
of solutions of the homogeneous system (4.1). Then there is a pair
of vectors a,b ∈ Fq[t]

s on this line, linearly independent over Fq(t),
satisfying fj(αa + βb) = 0 for all 1 ≤ j ≤ r and all α, β ∈ Fq[t].
Without loss of generality, we may assume that at least one of au or
bu is non-zero for 1 ≤ u ≤ η and that au = bu = 0 for η < u ≤ s. Note
that η satisfies 2 ≤ η ≤ s because a and b are linearly independent over
Fq(t). Furthermore, since Fq[t] is infinite, there exists a λ ∈ Fq[t] such
that a + λb has all nonzero coordinates in the first η places, and so
replacing a with this vector we may assume that au ̸= 0 for 1 ≤ u ≤ η
and that au = bu = 0 for η < u ≤ s.



RATIONAL LINEAR SPACES ON HYPERSURFACES 1815

Let ã = a1 · · · aη, and put ãu = ã/au for 1 ≤ u ≤ η. Set
M = max1≤u≤η deg (ãubu). By Remark 4.2, there exist infinitely many
pairs of nonzero polynomials y, z ∈ Fq[t] for which the set {y + zw :
deg (w) ≤ M} consists entirely of monic irreducible polynomials. For
any such pair (y, z), define

ϖu =

{
y + zãubu when 1 ≤ u ≤ η,

any monic irreducible polynomial when η < u ≤ s.

Since deg(ãubu) ≤ M for 1 ≤ u ≤ η, we have that ϖu is a monic
irreducible polynomial for 1 ≤ u ≤ η, and thus, ϖu is a monic
irreducible polynomial for 1 ≤ u ≤ s. Also, for 1 ≤ u ≤ η we have
auϖu = au(y + zãubu) = yau + (zã)bu, while for η < u ≤ s we
trivially have auϖu = 0 = yau + (zã)bu, since au = bu = 0. Thus, we
again have (4.2) and see that (ϖ1a1, . . . , ϖsas) is a solution of (4.1).
Note that, because a and b are linearly independent, the polynomials
ãubu = ãbu/au (1 ≤ u ≤ η) cannot all be the same, implying that our
monic irreducible polynomials ϖ1, . . . , ϖη cannot all be equal. �
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