Open Access
2013 Multipliers in locally convex *-algebras
Marina Haralampidou, Lourdes Palacios, Carlos J. Signoret Poillon
Rocky Mountain J. Math. 43(6): 1931-1940 (2013). DOI: 10.1216/RMJ-2013-43-6-1931


We consider a complete locally $m$-convex $^*$-algebra with continuous involution, which is also a ``perfect'' projective limit, and describe its multiplier algebra, {under a weaker topology}, making it a locally $C^*$-algebra. The same is applied in the case of certain locally convex $H^*$-algebras.


Download Citation

Marina Haralampidou. Lourdes Palacios. Carlos J. Signoret Poillon. "Multipliers in locally convex *-algebras." Rocky Mountain J. Math. 43 (6) 1931 - 1940, 2013.


Published: 2013
First available in Project Euclid: 25 February 2014

zbMATH: 1294.46045
MathSciNet: MR3178450
Digital Object Identifier: 10.1216/RMJ-2013-43-6-1931

Primary: 46H05 , 46H10 , 46K05

Keywords: Arens-Michael decomposition , left (right) multiplier , locally $C*$-algebra , locally $m$-convex $H*$-algebra , multiplier algebra‎ , perfect projective system , perfect topological algebra , Preannihilator algebra

Rights: Copyright © 2013 Rocky Mountain Mathematics Consortium

Vol.43 • No. 6 • 2013
Back to Top