Abstract
A function \(f:\mathbb{R}\to \mathbb{R}\) is additive if \( f(x+y)=f(x)+f(y)\) for all real numbers \(x\) and \(y\). We give examples of an additive function whose graph is fractal.
Citation
Harvey Rosen. "An Earlier Fractal Graph." Real Anal. Exchange 43 (2) 451 - 454, 2018. https://doi.org/10.14321/realanalexch.43.2.0451
Information