Open Access
2018 An Earlier Fractal Graph
Harvey Rosen
Real Anal. Exchange 43(2): 451-454 (2018). DOI: 10.14321/realanalexch.43.2.0451

Abstract

A function \(f:\mathbb{R}\to \mathbb{R}\) is additive if \( f(x+y)=f(x)+f(y)\) for all real numbers \(x\) and \(y\). We give examples of an additive function whose graph is fractal.

Citation

Download Citation

Harvey Rosen. "An Earlier Fractal Graph." Real Anal. Exchange 43 (2) 451 - 454, 2018. https://doi.org/10.14321/realanalexch.43.2.0451

Information

Published: 2018
First available in Project Euclid: 27 June 2018

zbMATH: 06924901
MathSciNet: MR1922661
Digital Object Identifier: 10.14321/realanalexch.43.2.0451

Subjects:
Primary: 26A15 , 28A78 , 28A80

Keywords: additive real function , fractal graph

Rights: Copyright © 2018 Michigan State University Press

Vol.43 • No. 2 • 2018
Back to Top