Open Access
2013/2014 Weighted a Priori Estimates for the Solution of the Dirichlet Problem in Polygonal Domains in \(\mathbb{R}^2\)
Marcela Sanmartino, Marisa Toschi
Real Anal. Exchange 39(2): 345-362 (2013/2014).

Abstract

Let \(\Omega\) be a polygonal domain in \(\mathbb{R}^2\) and let \(U\) be a weak solution of \( -\Delta u=f\) in \( \Omega\) with Dirichlet boundary condition, where \(f\in L^p_\omega(\Omega)\) and \(\omega\) is a weight in \(A_p(\mathbb{R}^2)\), \(1<p<\infty\). We give some estimates of the Green function associated to this problem involving some functions of the distance to the vertices and the angles of \(\Omega\). As a consequence, we can prove an a priori estimate for the solution \(u\) on the weighted Sobolev spaces \(W^{2,p}_\omega(\Omega)\), \(1<p<\infty\).

Citation

Download Citation

Marcela Sanmartino. Marisa Toschi. "Weighted a Priori Estimates for the Solution of the Dirichlet Problem in Polygonal Domains in \(\mathbb{R}^2\)." Real Anal. Exchange 39 (2) 345 - 362, 2013/2014.

Information

Published: 2013/2014
First available in Project Euclid: 30 June 2015

zbMATH: 1330.35111
MathSciNet: MR3365379

Subjects:
Primary: 35A23 , 35J05
Secondary: 35J08

Keywords: Dirichlet problem , Green function , weighted Sobolev spaces

Rights: Copyright © 2014 Michigan State University Press

Vol.39 • No. 2 • 2013/2014
Back to Top