Abstract
We prove that for any continuous real valued function $f$ on $[a,b]$ there exists a continuous function $K$ such that $K\!-\!f$ has bounded variation and $(K\!-\!f)^\prime = 0$ almost everywhere on $[a,b]$ and such that in any subinterval of $[a,b]$, $K$ has right derivative $\infty$ at continuum many points, $K$ has left derivative $\infty$ at continuum many points, $K$ has right derivative $-\infty$ at continuum many points, and $K$ has left derivative $-\infty$ at continuum many points. Furthermore, functions $K$ with these properties are dense in $C[a,b]$. We can assume the infinite derivatives of $K$ are bilateral if $f$ is of bounded variation on $[a,b]$ or if $f$ satisfies Lusin's condition $(N)$.
Citation
F. S. Cater. "On Infinite Unilateral Derivatives." Real Anal. Exchange 33 (2) 309 - 316, 2007/2008.
Information