Open Access
1996/1997 Universally bad Darboux functions in the class of additive functions
Dariusz Banaszewski
Author Affiliations +
Real Anal. Exchange 22(1): 284-291 (1996/1997).


The main result: For every family \(\mathcal{G}\) of additive functions with \(\text{card }{\mathcal{G}}=2^\omega\) if the covering of the family of all level sets of functions from \(\mathcal{G}\) is equal to \(2^\omega\), then there exists an additive Darboux function \(f\) such that \(f+g\) is Darboux for no \(g\in\mathcal{G}\).


Download Citation

Dariusz Banaszewski. "Universally bad Darboux functions in the class of additive functions." Real Anal. Exchange 22 (1) 284 - 291, 1996/1997.


Published: 1996/1997
First available in Project Euclid: 1 June 2012

zbMATH: 0879.26014
MathSciNet: MR1433614

Primary: 26A15
Secondary: 26A51‎

Keywords: additive function , Darboux function , maximal additive family , universally bad Darboux function

Rights: Copyright © 1996 Michigan State University Press

Vol.22 • No. 1 • 1996/1997
Back to Top