Open Access
2017 Sobolev Regularity of the Beurling Transform on Planar Domains
Martí Prats
Publ. Mat. 61(2): 291-336 (2017). DOI: 10.5565/PUBLMAT6121701

Abstract

Consider a Lipschitz domain $\Omega$ and the Beurling transform of its characteristic function ${\mathcal B} \chi_\Omega(z)= - \text{p.v.}\frac1{\pi z^2}*\chi_\Omega (z) $. It is shown that if the outward unit normal vector $N$ of the boundary of the domain is in the trace space of $W^{n,p}(\Omega)$ (i.e., the Besov space $B^{n-1/p}_{p,p}(\partial\Omega)$) then $\mathcal{B} \chi_\Omega \in W^{n,p}(\Omega)$. Moreover, when $p>2$ the boundedness of the Beurling transform on $W^{n,p}(\Omega)$ follows. This fact has far-reaching consequences in the study of the regularity of quasiconformal solutions of the Beltrami equation.

Citation

Download Citation

Martí Prats. "Sobolev Regularity of the Beurling Transform on Planar Domains." Publ. Mat. 61 (2) 291 - 336, 2017. https://doi.org/10.5565/PUBLMAT6121701

Information

Received: 31 July 2015; Revised: 27 April 2016; Published: 2017
First available in Project Euclid: 29 June 2017

zbMATH: 1375.30026
MathSciNet: MR3677864
Digital Object Identifier: 10.5565/PUBLMAT6121701

Subjects:
Primary: 30C62 , 42B37 , 46E35

Keywords: Beurling transform , David-Semmes betas , Lipschitz domains , Peter Jones' betas , quasiconformal mappings , Sobolev Spaces

Rights: Copyright © 2017 Universitat Autònoma de Barcelona, Departament de Matemàtiques

Vol.61 • No. 2 • 2017
Back to Top