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SOBOLEV REGULARITY OF THE BEURLING
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Abstract: Consider a Lipschitz domain €2 and the Beurling transform of its char-
acteristic function Bxq(z) = —p.v. ﬂig * xq(2). It is shown that if the outward unit
normal vector N of the boundary of the domain is in the trace space of W™P(Q)
(i.e., the Besov space B;L’;l/p(aﬂ)) then Bxo € W™P(Q). Moreover, when p > 2
the boundedness of the Beurling transform on W™P(Q) follows. This fact has far-
reaching consequences in the study of the regularity of quasiconformal solutions of
the Beltrami equation.
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1. Introduction

Given a function g € LP, its Beurling transform is defined as

Bg(z) := lim _—1/ _9(w) dm(w) for almost every z € C.
e=0 T Jjpezse (2 —w)?

The Beurling transform is a bounded operator on LP for 1 < p < o0
and, since it is a convolution operator, it is also bounded on the Sobolev
space W™P for n € N, that is, the space of functions with weak deriva-
tives up to order n in LP. However, given a domain 2, the Beurling
transform restricted to the domain Bg := xaB(xq:) is not bounded
on W™P(Q) in general, although some conditions on the regularity of
the boundary of Q2 can make it happen.

Consider for example the Beurling transform of the characteristic
function of a square @ with vertices w; for i € {1,2,3,4}. Then for
every z €  we have that Bxq(z) = >, a;log(z — w;) for some a; € C
(see [AIM, formula (4.122)], for instance). Then 0Bxq(z) =, aiz%wi
which is not in L? for p > 2. For n > 2, the n-th derivative satisfies
|0"Bxq(2)| = > ﬁ which is not in L? for any p > 1. Of course, this
implies that Bg is not bounded on WP (Q) for p > 2 neither on W™?(Q)
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for p > 1 and n > 2. The interested reader may find a discussion on
the case p < 2, n = 1 in [PT]. That paper treats also the case of the
domain being the unit disk D, when Bp is bounded in every Sobolev
space W™P(D) with 1 < p < oco. It is clear that the regularity of the
boundary of a domain €2 plays a crucial role in determining whether the
restricted Beurling transform is bounded or not on W™P(Q).

In [CMO] Cruz, Mateu, and Orobitg proved a T'(1)-theorem for do-
mains with parameterizations of the boundary of  in C'¢ with 0 < ¢ <
1 that grants the boundedness of Bq in the Sobolev space W*P(Q) if
Bal = xaBxa € WP(Q) for 0 < s < 1and 1 < p < oo with sp > 2 (the
Sobolev space is defined via the Bessel potential for s ¢ N). Moreover,
they showed that when 0 < s < ¢ < 1 and 1 < p < oo one has that
Bal € WP(Q) by means of some results from [MOV].

In [PT] Tolsa and the author of the present text presented a T'(P)-
theorem for W™P(Q) which is valid for Lipschitz domains (and uniform
domains as well) when n € N and p > 2, granting the boundedness of Bg
on WmP(Q) if BoP € W™P(Q) for every polynomial P of degree smaller
than n.

Cruz and Tolsa proved in [CT] that for 0 < s < 1,1 < p < o©
with sp > 1, if the outward unit normal vector IV is in the Besov space
B;;l/p((’?Q) (see Subsection 2.3) then Byq € W*P(Q). This condition is
necessary for Lipschitz domains with small Lipschitz constant (see [Tol]).
Moreover, being N € Bi,"/?(0Q) implies the parameterizations of the
boundary of  to be in B]S),J;)l*l/p and, for sp > 2, the parameterizations
are in C15~2/P by the Sobolev Embeding Theorem. In that situation,
one can use the T'(1) result in [CMO] to deduce the boundedness of the
Beurling transform in W#P(Q).

In this article we prove that the result in [CT] holds for s € N:

Theorem 1.1. Let p > 1, let n € N, and let Q0 be a bounded Lipschitz
domain with parameterizations in C"~ Y1 and with N € B;ﬁ;l/p(aﬁ).
Then we have that

1B(xa)lwnr@) < CHN”BS;””((‘)Q)’

where C' depends on p, n, diam(QQ), and the Lipschitz character of the
domain.

The proof presented here will be slightly more tricky since we will need
to approximate the boundary of the domain by polynomials instead of
straight lines. The derivative of the Beurling transform of the character-
istic function of a half-plane is zero out of its boundary (see [CT]), but
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the derivative of the Beurling transform of the characteristic function of
a domain bounded by a polynomial of degree greater than one is not
zero anymore in general.

Using the T'(P)-theorem of [PT] this will suffice to see the bounded-
ness of the Beurling transform.

Theorem 1.2. Let 2 < p < oo, let n € N, and let Q be a bounded

Lipschitz domain with N € Bﬁ;l/p((“)ﬂ). Then for every f € W™P(Q)
we have that

1B llwr @) < CUNI gm0 I lwescen.

where C' depends on p, n, diam(QQ), and the Lipschitz character of the
domain.

Both theorems above are particular cases of Theorems 3.10 and 3.14,
which cover a wider family of operators including the Beurling transform
and its iterates B, showing that the constants have exponential growth
with respect to m with base as close to 1 as desired. This has far-reaching
consequences in quasiconformal mappings.

Indeed, let u € L supported in a certain ball B C C with ||u||p~ < 1.
We say that f is a quasiregular solution to the Beltrami equation

(1.1) of = pof

with Beltrami coefficient p if f € Wli)’f, that is, if f and V f are square
integrable functions in any compact subset of C, and 0f(2) = u(2)0f(z)
for almost every z € C. Such a function f is said to be a quasiconformal
mapping if it is a homeomorphism of the complex plane. If, moreover,
fz)=2z+ (9(%) as z — 0o, then we say that f is the principal solution
to (1.1).

Given a compactly supported Beltrami coefficient u, the existence
and uniqueness of the principal solution is granted by the measurable
Riemann mapping Theorem (see [AIM, Theorem 5.1.2], for instance).
The operator I — uB is invertible in L? and, if we call

hi= (I —pB) = p+ pB(p) + pB(uB(p)) + - --

and f is the principal solution of (1.1), then f = h and 0f = Bh + 1.

Let n,m € N and 2 < p < co. In [Pra] the author of the present
article uses the results obtained here to show that if a domain 2 satisfies
the hypothesis of Theorem 1.2 and a Beltrami coefficient p € W™?(Q),
then ™ B™ is a bounded operator on WP () with norm tending to zero
as m tends to infinity. This is used to show that h € W™P(Q) as well
by means of Fredholm theory, giving place to the following remarkable
result.
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Theorem (See [Pra]). Let n € N, let Q be a bounded Lipschitz domain
with outward unit normal vector N in Bﬁ;l/p(@Q) for some 2 < p < o0,

and let p € W™P(Q) with ||p||r~ < 1 and supp(p) C Q. Then the
operator

(In — uBa): [ = (xaf — uBa(f))
is invertible in W™P(Q) and the principal solution f to (1.1) is in the
Sobolev space WnT1P(Q).

For results connecting the Sobolev regularity W#?(C) of a quasicon-
formal mapping and its Beltrami coefficient we refer the reader to [Ast],
[AIS], [CFMT], [CFR], and [CMO] and, when Sobolev spaces on do-
mains are concerned, to [MOV], [CF], and [CMO] again.

The plan of the paper is the following. In Section 2 some prelimi-
nary assumptions are stated. Subsection 2.1 explains the notation to be
used and recalls some well-known facts. In Subsection 2.2 one finds the
definition of some generalized [S-coefficients related to Jones and David—
Semmes’ celebrated betas. In Subsection 2.3 the definition of the Besov
spaces By, is given along with some related well-known facts and an
equivalent norm in terms of the generalized (-coefficients using a result
by Dorronsoro in [Dor|. Subsection 2.4 is about some operators related
to the Beurling transform, providing a standard notation for the whole
article.

Section 3 is devoted to prove Theorems 1.1 and 1.2. The first step is to
study the case of unbounded domains whose boundary can be expressed
as the graph of a Lipschitz function. Subsection 3.1 contains the outline
of the proof, reducing it to two lemmas. The first one studies the relation
with the f-coefficients and is proven in Subsection 3.2. The second one,
proven in Subsection 3.3, is about the case where the domain is bounded
by the graph of a polynomial, and here one finds the exponential behavior
of the bounds for the iterates of the Beurling transform, which entangles
the more subtle details of the proof. Finally, in Subsections 3.4 and 3.5
one finds a more quantitative version of Theorem 1.1 and Theorem 1.2
for bounded Lipschitz domains using a localization principle and the
aforementioned T'(P)-theorem.

2. Preliminaries
2.1. Some notation and well-known facts.

On inequalities. When comparing two quantities z; and xo that de-
pend on some parameters py, ...,p; we will write
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if the constant Cpil,--»,pij depends on p;,,...,p;;. We will also write
T 51”17“,,,,% xo for short, or simply z7 < x5 if the dependence is clear
from the context or if the constants are universal. We may omit some of
these variables for the sake of simplicity. The notation x; Ropiy sy L2

will mean that z; Spily---,pij T9 and xo gpil,,__ pi T1.

P

On polynomials. We write P" for the vector space of polynomials of
degree smaller or equal than n with one variable.

On sets. Given two sets A and B, their symmetric difference is AAB :=
(AUB)\ (AN B). Given z € C and r > 0, we write B(z,r) or B,(z) for
the open ball centered at z with radius r and Q(z,r) for the open cube
centered at z with sides parallel to the axis and side-length 2r. Given
any cube @, we write £(Q) for its side-length, and rQ will stand for the
cube with the same center but enlarged by a factor . We will use the
same notation for balls and one dimensional cubes, that is, intervals. For
instance, I(z,r) = (x —r,x+r) for x € R and r > 0.

At some point we need to use intervals in C: given z,w € C, we call
the interval with endpoints z and w

[z,w] :={(1 —¢t)z+tw:t€[0,1]}.
We may use the “open” interval |z, w[:= [z, w] \ {2z, w}.

Let n € N. We say that a function f: R — C belongs to the Lipschitz
class C™~ 11 if it has n — 1 continuous derivatives and

n—1 i (n—1) 2) — (n—1) w
1f 11y = 3 1Dl oy + sup f" (=) = F D ()]
i=1 z,m;éeR |z — w|
ZFW

We call domain an open and connected subset of C.

Definition 2.1. Given n > 1, we say that Q C C is a (§, R) — C"~ 1!
domain if given any z € 02, there exists a function A, € C"~L1(R)
supported in [—4R,4R] such that

AP || Lo < for every 0 < j < n,

Ri—1

and, possibly after a rigid movement 7 composed by a translation that
sends z to the origin and a rotation that brings the tangent at z to the
real line, we have that

T NQO,R)={c+iy:y>A.(z)},

and so that, given |z| < R, the point in the graph (x, A(z)) belongs
to 0N after the corresponding rotation and translation. In case n = 1 the
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assumption of the tangent is removed (we say that €2 is a (0, R)-Lipschitz
domain).

We call window the preimage Q = 771(Q(0, R)) by that rigid move-
ment.

On measure theory. We denote the 1-dimensional Lebesgue measure
in R by my (or m if it is clear from the context). We will write dz for
the form dx + i dy and analogously dz = dx — ¢ dy, where z = = + i y.
Thus, when integrating a function with respect to the Lebesgue measure
of a complex variable z we will always use dm(z) to avoid confusion, or
simply dm. Note that, at some point, we use m also to denote a natural
number.

On indices. In this text Ny stands for the natural numbers including 0.
Otherwise we will write N. We will make wide use of the multiindex
notation for exponents and derivatives. For o € Z? its modulus is |a| =
2?21 |a;| and its factorial is ! = aglas!. Given two multiindices «,y €
72 we write a < v if a; < ; for every i. We say o < v if, in addition,
« # . Furthermore, we write

<a) :ﬁ(OLz):{H?:lM ifaEN%and(jS*ySa,
0

v o \Yi otherwise.

At some point we will use also roman letter for multiindices, and then,
to avoid confusion, we will use the vector notation 4, 7, ...

On complex notation. For z = z + iy € C we write Re(z) := « and
Im(z) := y. Note that the symbol 7 will be used also widely as a index
for summations without risk of confusion. The multiindex notation will
change slightly: for z € C and o € Z? we write 2% := z*1z%2,

We also adopt the traditional Wirtinger notation for derivatives, that
is, given any ¢ € C°(C), then

_9

00(2) = ££(2) = 5(0u6 — 10,0)(2),
and
06(2) i= G2(2) = 3046 +10,0)(2).

Thus, given any ¢ € C2°(C) (infinitely many times differentiable with
compact support in C) and a € N2, we write D%¢ = 9*19%2¢.
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On Sobolev spaces. For any open set U C C, every distribution f €
D'(U) and o € N3, the distributional derivative D f is the distribution
defined by

(D f,¢) == (=1)I*l(f,D*¢) for every ¢ € C°(V).

Abusing notation we will write D* instead of Df; if it is clear from the
context. If the distribution is regular, that is, if it coincides with an
L} . function acting on D(U), then we say that D& f is a weak derivative
of finU. We write [V"f| =3, [D“f].

Given numbers n € N, 1 < p < oo an open set U C C, and an
L{ (U) function f, we say that f is in the Sobolev space W™ (U) of
smoothness n and order of integrability p if f has weak derivatives D} f €
LP for every o € N2 with |a] < n. When  is a Lipschitz domain, we
will use the norm

I fllwne) = [1fllze) + IV fllze @),
which is equivalent to considering also the fewer order derivatives, that
is,
(2.1) I fllwnre ) = | fllzr) + Z D fll e ()
loe|<n

(see [Tril, Theorem 4.2.4]) or, if  is an extension domain,

n,p =~ lnf F n,p .
| fllwn» ) F:F\sz” llwn.e(c)

From [Jon|, we know that uniform domains (and in particular, Lipschitz
domains) are Sobolev extension domains for any indices n € N and 1 <
p < 00. One can find deeper results in that sense in [Shv] and [KRZ].

The reader can consider n € N and 1 < p < oo to be two given
numbers along the whole text. At some point the restriction 2 < p will
be needed.

On finite diferences. Given a function f: Q C C — C and two values
z,h € C such that [z, 2z + h] C Q, we call

ALf(2) = Anf(z) = f(z+h) = f(2).

Moreover, for any natural number ¢ > 2 we define the iterated difference
, . i ! i (i .
) = A3 G 1) = A1) = o1 () 76+

j=0

whenever the segment [z, z + ih] C Q.
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On Whitney coverings. Given a domain {2, we say that a collection of
open dyadic cubes W is a Whitney covering of € if they are disjoint, the
union of the cubes and their boundaries is €2, there exists a constant C)y,
such that

Owl(Q) < dist(Q, 09) < 4Cwl(Q),

two neighbor cubes @ and R (i.e., QN R # 0) satisfy £(Q) < 2¢(R), and
the family {20Q}gew has finite superposition. The existence of such a
covering is granted for any open set different from C and in particular
for any domain as long as C)y is big enough (see [Ste, Chapter 1] for
instance).

On the Leibniz rule. The Leibniz formula (see [Eva, Section 5.2.3])
says that given a domain Q C C, a function f € W™P(Q), a multiin-
dex o € N2 with |a] < n and ¢ € C°(Q2), we have that ¢ - f € W™P(Q)
with

D¢ f =" (?y‘)D%DMf.

VS

On Green’s formula. Green’s Theorem can be written in terms of
complex derivatives (see [AIM, Theorem 2.9.1]). Let Q be a bounded
Lipschitz domain. If f,g € W1(Q) N C(Q), then

(2.2) /Q(af—kég) dm = % ( [ eyas- /mg(z) dz) .

On Rolle’s Theorem. We state here also a Complex Rolle Theorem
for holomorphic functions [EJ, Theorem 2.1] that will be a cornerstone
of Subsection 3.3.

Theorem 2.2 (see [EJ]). Let f be a holomorphic function defined on
an open convex set U C C. Let a,b € U such that f(a) = f(b) =0 and
a #b. Then there exists z in the segment |a, b such that Re(df(z)) = 0.

On the Sobolev Embedding Theorem. We state a reduced version
of the Sobolev Embedding Theorem for Lipschitz domains (see [AF,
Theorem 4.12, Part II]). For each Lipschitz domain 2 C C and every
p > 2, there is a continuous embedding of the Sobolev space W1P(Q)

into the Holder space C%'~ % (Q). That is, writing

£ (2) = f(w)]

for 0 < s <1,
|z —w|*®

1oy = Il + sup
ERTISIY)

ZF#wW
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we have that for every f € W1P(Q),

”fH 0 1—7(9) < OQHf”Wl,p(Q).

On inequalities. We will use Young’s Inequality. It states that for
measurable functions f and g, we have that

(2.3) 1f *gllee < [Iflle-llgllze
for 1 < p,q,r < oo with % = % + % — 1 (see [Ste, Appendix A2]).

Lr

2.2. Some generalized betas. In [Dor|, Dorronsoro introduces a
characterization of Besov spaces in terms of the mean oscillation of the
functions on cubes, and he uses approximating polynomials to do so.
If the polynomials are of degree one, that is straight lines, this defini-
tion can be written in terms of a certain sum of David—Semmes betas
(see [CT] for instance). Following the ideas of Dorronsoro in our case
we will use higher degree polynomials to approximate the Besov function
that we want to consider, giving rise to some generalized betas. The fol-
lowing proposition comes from [Dor]|, where it is not explicitly proven.
We give a short proof of it for the sake of completeness.

Proposition 2.3. Given a locally integrable function f: R — R and an
interval I C R, there exists a unique polynomial R} f € P™ which we
will call approximating polynomial of f on I, such that given any j < n
one has that

(2.4 J®ir—pai -
I
Remark 2.4. In case of existence, the approximating polynomial verifies

sup R £ (2)] < - [ 1f1dm.

Proof: Indeed, since P" is a finite dimensional vectorial space, all the
norms are equivalent. In particular one can easily see that for any P €
’P’I’L
2 1 2
[Pl Zoe () = mHPHLZ(I)'
Using the linearity of the integral in (2 4), one has

IR} f|?dm = — /R”f fdm.
[1] / 1]
Combining both facts one gets
IRT fll7 e 1) S II\HR 1Ll fll O



300 M. PRrATS

Proof of Proposition 2.3: By the Hilbert Projection Theorem, L?(I) =
P @ (P™)L. Thus, if f € L2(I), we can write f|; = R} f + (f|r — R} f)
satisfying (2.4).

For general f € L', we can define a sequence of functions {f;};en C
L%(I) such that |f;| < |f| and f; == f. By Remark 2.4 we have that
the approximating polynomials R f; are uniformly bounded in I by

sup R} f3(2)| S - [ Ifldm < - [ |fldm.
wel 11 1 1] Ji
Therefore there exists a convergent subsequence of {R7 f;}; in L' (and
in any other norm). We call R} f the limit of one such partial. By the
Dominated Convergence Theorem we get (2.4).

To see uniqueness, we observe that if we find two polynomials P;
and P» satisfying (2.4), then

/(P1 — P)Pdm =0

I
for any P € P™. In particular, if we take P = P, — P, we get that
[Py = Pallr2(r) = 0. O
Remark 2.5. Given P € P™, an interval I and 1 < p < oo we have that
(2.5) If =R flleery < Cullf = Pllze,
and given any intervals I C I,
(2.6) If =R flleey < Cullf = REfll oy

Proof: By means of the Triangle Inequality and (2.4), we have that for
any P € P"

1f =RY flleery < If = Plleeay + 1P =R flloon
= |f = Plleey + IRT(P = H)llzo(n)-

Therefore, we use twice Holder’s Inequality and Remark 2.4 to get

1 =R} F oy < I = Plloseny+HYPIREP = |y

|[|1/p
S llf = Plleey+ W 1P = fllzrry < 20f =Pllze.-
The inequality (2.6) is just a consequence of (2.5) replacing P
by R, f. 0

Remark 2.6. This proposition is still valid in any dimension mutatis
mutandis. However, in the one dimensional case, if f is continuous and
I is an interval one can easily see that f —R” f has n+1 zeroes at least.
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Indeed, if it did not happen, one could find a polynomial P € P™ with
a simple zero at every point where f — R} f changes its sign, and no
more. Therefore, (f — R} f)- P would have constant sign and, thus, the
integral in (2.4) would not vanish (see Figure 2.1).

f

P
] *
! -/ Rif | |
. : ;

FIGURE 2.1. If f —R?f had only 2 zeroes, there would
exist P € P? with [;(f — R7f)Pdm > 0.

Now we can define the generalized betas.

Definition 2.7. Let f: R — R be a locally integrable function and
I C R an interval. Then we define

6 n (fa I) =
" 11 Jas 7]
Remark 2.8. Taking into account (2.5), we can conclude that
o L[ f(@) - Pa)]
By (f. D)~ inf — [ T gy ),
" pepe (1] Jor 1]

This can be seen as a generalization of David and Semmes 3; coeflicient
since 3(1) and f; are comparable as long as some Lipschitz condition is
assumed on f.

2.3. Function spaces. Next we recall some definitions and results on
the function spaces that we will use. For a complete treatment we refer
the reader to [Tri2] and [RS].

Definition 2.9. Let ®(R) be the collection of all the families ¥ =
{11520 C C°(R) such that

supp Yo C (—2,2),

supptp; C (=27F1, 27\ (=2771 2771 if j > 1,
for all i € Ny there exists a constant ¢; such that

19570 < 357 for every j >0,
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and

Zz/Jj (x)=1 for every z € R.
j=0

Definition 2.10. Given any Schwartz function ¢» € S(R) its Fourier
transform is

Fy(() = /R e=2miCy(2) dim(z),

This notion extends to the tempered distributions S(R)’ by duality.
Let seR, 1<p<o00,1<g<o0,and ¥ € ®(R). For any tempered
distribution f € §’(R) we define the non-homogeneous Besov space

1A, = K2V F = 5 F Yoy = ({27 IF 7 05 F Lo}

and we call By | C S’ to the set of tempered distributions such that this
norm is finite.

These norms are equivalent for different choices of ¥. In general one
works with radial v; and such that ;41 (z) = ¥;(x/2). Of course we
will omit ¥ in our notation since it plays no role.

Proposition 2.11 (See [Tri2, Sections 2.3.3 and 2.7.1]). The following
properties hold:
1. Let 1 < qo,q1 <ocoandl1 <p<oo, seR, ande > 0. Then

\+ 3
B;’qg - B;Mh'
2. Given 1 < pg<p; <oo and —o0 < s1 < 89 < 00. Then
. 1 1
(2.7) Bf,g’po - B;i,pl if s — p—o =351 — p—l

If we set j € Z instead of j € N in Definition 2.9, then we get the ho-
mogeneous spaces of tempered distributions (modulo polynomials) B, .-
In particular, by [Tri3, Theorem 2.3.3] we have that if s > 0 then

(28) 1y, ~ sy + 1l forany f €8

In the particular case of homogeneous Besov spaces with 1 < p, ¢ < oo
and s > 0, one can give an equivalent definition in terms of differences
of order M > [s] + 1:

A FI, dm(h)\?
(2. oy, =~ ([ 1SR

In [CT] the authors point out that the seminorm of the homogeneous
Besov space B, , for 0 < s < 1 can be defined in terms of the approx-
imating polynomials of degree 1 from the previous section. In general,
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[Dor, Theorem 1] together with (2.6) and Remark 2.8 can be used to
prove without much effort that for any s > 0 and n > [s],

[e%s} " ,I',t p qd 1/q
iy, ([ (et L0y ey,

In the particular case when p = ¢, which is in fact the one we are inter-
ested on, it is enough to consider dyadic intervals. Namely, writing D for
the canonical dyadic grid, via Fubini’s Theorem one can conclude that

n 7I P
(210 I, = > (Pt2)

1D

When restricting to an open interval I, we call

(211) ||f|‘%;,p(1) :: lnf ||F||B

Consider the boundary of a Lipschltz domain €2 C C. When it comes
to the Besov space B, ,(09) we can just define it using the arc parameter
of the curve, z: I — GQ with |2/(¢)| = 1 for all t. Note that if the domain
is bounded, then I is a finite interval with length equal to the length of
the boundary of 2 and we need to extend z periodically to R in order
to have a sensible definition. Then, if 1 < p, g < oo, we define naturally
the homogeneous Besov norm on the boundary of  as

1f] Bs (2I)

Let n > 1, 6, R > 0 and let © be a bounded (§, R) — C"~ ! domain.
Consider N: 9Q — R? to be the unitary outward normal vector of a
Lipschitz domain. The following lemma gives a relation between the
Besov norm of N and the betas of the parameterizations of the boundary
of the domain. For this we will ask to have some controlled overlapping
of the windows that we consider.

Lemma 2.12. Letn > 1,8, R > 0, let Q be a bounded (5, R)—C™~ 1! do-
main, and let {Qx} | be a collection of R-windows such that {%Qk}k

cover the boundary of Q and {4—10Qk}k are disjoint. Let {A}r be the
parameterizations of the boundary associated to each window. Then for
any 1 <p < oo

M /BTL (A5 M
> X (g(})n’; = S 3 A

k=1IeD:ICtIr

Bs 09) = |f ozl +f oz

n+1 1/p(3 < HN” n— l/P(aQ)

where I stands for the interval (—R, R). The constants depend on n,
p, 6, R, and the length of the boundary H' ().
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The proof of this lemma for n = 1 can be found in [CT, Lemma 3.3].
The case n > 2 is quite technical but uses the same tools, its proof can
be found in the appendix.

2.4. A family of convolution operators in the plane.

Definition 2.13. Consider a function K : C\{0} — C. Forany f € L] _
we define

TX f(2) = lim K(z —w)f(w)dm(w)
e—0 (C\BE (Z)

as long as the limit exists, for instance, when K is bounded away from 0,
f € L' and 2z ¢ supp(f) or when f = xy for an open set U with z € U,
fBE(O)\BE/(O)Kdm = 0 for every ¢ > ¢ > 0 and K is integrable at
infinity. We say that K is the kernel of 7K.

For any multiindex vy € Z?, we will consider K7(z) = 27 = 27127
and then we will put shortly 77 f := TX" f, that is,

(2.12) T7f(z) = lim (z —w)7 f(w) dm(w)
=70Je\B.(2)
as long as the limit exists.
For any operator T and any domain ), we can consider Tqf =

xaT(xa f)

Example 2.14. As the reader may have observed, the Beurling trans-
form is in that family of operators. Namely, when K(z) = 272, that
is, for v = (—2,0), then %T“’ is the Beurling transform. The opera-
tor %T(’l’o) is the so-called Cauchy transform which we denote by C.

Consider the iterates of the Beurling transform B™ for m > 0. For
every f € LP and z € C we have

(—=1)™m lim (z—7)m"1

™ =0 |z—T|>¢ (Z - T)m+1

B"f(z) = (1) dm(r)

(2.13)
(_l)mmT(fmfl,mfl)f(Z)

0
(see [AIM, Section 4.2]). That is, for v = (y1,72) with 71 + 72 = —2
and y; < —2, the operator T is an iteration of the Beurling transform
modulo constant, and it maps LP(U) to itself for every open set U.

If v < —2 instead, then 77 is an iterate of the conjugate Beurling
transform and it is bounded in L? as well.
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3. The characteristic function
3.1. The case of unbounded domains 2 C C.

Definition 3.1. Givenn € N, 1 < p < o0, 6 > 0, and R > 0, we say
that Q@ = {z +iy € C:y > A(x)} is a (4, R, n,p)-admissible domain
with defining function A if

o the defining function A € B;ﬁ;l*”p nen-bl
e we have A(0) =0 and, if n > 2, A’(0) =0,
e and we have Lipschitz bounds on the function and its derivatives
[AD Lo < 75 for 1 < j < m.
We associate a Whitney covering VW with appropriate constants to 2.
The constants will be fixed along this section, depending on n and 6.

In this section we will prove the next result for the operators T7
defined in (2.12).

Theorem 3.2. Considerd, R,e > 0, p > 1, and a natural number n > 1.
There exists a radius pe < R such that for every (8, R,n,p)-admissible
domain Q and every multiindex v € Z2 with y1 + o = —n — 2 and
v -2 < 0, we have that Txq € LP(Q N B(0,p.)) and, if A is the
defining function of 2, then the estimate

||T’YXQ||§P(Q|"|B(O7P€)) <C <||A||%gp1/p+1 + Pffnp(l + G)l’”p)

(=5pe,5p¢)

is satisfied, where C' depends on p, n, and the Lipschitz character of €
(see Figure 3.1).

Yy
sy

H

=

pe

FiGure 3.1. Disposition in Theorem 3.2.
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Definition 3.3. Consider n € N, 1 < p < o0, § > 0, R > 0, and a
(6, R, n, p)-admissible domain with defining function A. Then for every
interval I we have an approximating polynomial R%; := R%; A and

1 A(z) — R} (z
foott) = i [ A Bt g,
We call
1={r+iy:y>Ry(2)}
Let m: C — R be the vertical projection (to the real axis) and @ a cube

in C. If 7(Q) = I we will write Qf, := Q7.

Remark 3.4. Note that 7 sends dyadic cubes of C to dyadic intervals
of R and, in particular, any dyadic interval has a finite number of pre-
images in the Whitney covering W of 2 uniformly bounded by a constant
depending on ¢ and the Whitney constants of W.

Proof of Theorem 3.2: By (2.10) we have that ), (Z(/i()vig)/p)pg(f) ~
HAHI];n,l/pH, and, by (2.11) we get

B(n) (I) b
E AN < p
(Z(I)nl/p g(I) ~ ||A||B;}L;l/p+1(75p€,5p5)7

IeD.

where D, stands for {I € D : £(I) < 2p. and I C (—3p,3pc)}. Thus, it
is enough to prove that

BT xell» @npo,p)) §C<
I1€D,

We begin the proof by some basic observations. Let ji,jo € Z such
that jo # j1 + 1. Then the line integral

2w
(3.2) / w2 dw = z/ 0013211 4o = 0.
oD 0

If, moreover, j2 > 0, given 0 < & < 1 Green’s formula (2.2) says that

(3.3) / w2 dm(w) = - / —/ w572 dw = 0.
D\B(0,¢) 2j2\Jap JoB(o.e)
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Consider a given v € Z2? with 1 + v, = —n — 2 and assume that
2 > 0 (the case 3 > 0 can be proven mutatis mutandis). Consider a
Whitney cube @ and z € B(0, p.) N Q. Then by (3.3) we have that

T x0(2)] = ‘ [ A xal) dm

(3.4) <

[ o xayle) dn(w)
|z—w[>£(Q)

Xor (W) — Xolw
o o) ~xotwl
|z—w|>£(Q) |U) - Z|

If we have taken appropriate Whitney constants, then we also have that
£(Q) < dist(Q, 097) (see Remark 2.4) and, thus, by (3.3) again, we have
that

(3.5) / (w — =) xap () dm(w) = T xap (2).
[z—w|>£(Q)

We will see in Subsection 3.3 that the following claim holds.

Claim 3.5. There exists a radius p. (depending on 6, R, n, and €) such
that for every z € B(0, pe) with z € Q € W, we have that

(14 )l
(3.6) |T7X95 ()] S T
The last term in (3.4) will bring the beta coefficients into play. Re-
call that we defined the symmetric difference of two sets A; and As as
A1AAy = (A1 U Az) \ (A1 N A). Our choice of the Whitney constants
can grant that 3Q C 2 N so

[Xap (w) —xa(w)] 1
3.7 / Q dm(w :/ — dm(w).
37 |z—w|>£(Q) |w — z|"+2 (w) QBAQ lw — z|"+2 (w)

Next we split the domain of integration in vertical strips. Namely, if we
call S; = {w € C: |[Re(w — 2)| < 29¢(Q)} for j > 0 and S_; = 0, we
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have that
1
—— dm(w)
/%AQ |w — 2| t2

/ _dm(w)
_ 2
§>0: 231’(Q QGANNS;\S;j 1 w — 2|+

dm(w)
+ n+2
|lw—z|>pe/2 |U} - Z|

n 1 1
S Z |(QQAQ)QSJ|W+E'
720:216(Q)<p. ¢

(3.8)

We will see in Subsection 3.2 the following;:

Claim 3.6. We have that

n B() .

(3.9)  [(QBAQ) N S| S 3 (2 (270(Q))™
IeD

m(Q)CIC2? T 7 (Q)

Summing up, plugging (3.5) and (3.6) in the first term of the right-
hand side of (3.4) and plugging (3.7), (3.8), and (3.9) in the other term,
we get

B (I) 1
v < J n+l -
TGl 22 e PO gy
J=0 IeD
27€(Q)<p5 m(Q)CICc2/ ' n(Q)
+£&;¢ﬂ.
P

Note that the intervals I in the previous sum are in D, = {I € D : {(I) <
2pe and I C (—3pe,3pe)}. Reordering and computing,

Bmy () 1 (1+e)h!
T'xa(2)| < - +
T Xa(2)| S ZD O Z 570 T
m(Q)CI IC29tin(Q)

([ 1 vl
s ¥ e T
= ) P!
w(Q)CI
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Raising to power p, integrating in ) and adding we get that for
pe small enough

p
By ) | (14N
||T’YXQ||I£P(QOB(O,;7€))§” Z |Q|< KELI)" N
I€D,

p?’L
Qew €
QNB(0,pe)#0 (@)l

(3.10) Buy(D)Y
< JANLTA N
s X e ¥

QEW I1eD.
QNBO,p)#0  m(Q)CI

+p27"P(1 + e)llp,
Regarding the double sum, we use Holder’s Inequality to find that
P
By (1)
>l X i
(1)
QeEW IeD.
QNB(0,pc)#0 m(Q)CI

P

g () (2 )

Qew IeD, g([)n—ﬁ rep. A(I)2
m(Q)CI m(Q)CI
n\ .
(3.11) < S U Y (5””> (e
Qew rep, \L(I)" 7w
m(Q)CI
n 1 : 3
<y <’8””> S )
[ep, \LI)" "2 Qew
m(Q)CI
B(n)(f)>p
N —— | ),
" I;;E <€(I)n_”

where the constant in the last inequality depends on the maximum num-
ber of Whitney cubes that can be projected to a given interval, depending
only on ¢ and n.

Thus, by (3.10) and (3.11) we have proven (3.1) when v, > 0. The
case y2 < 0 can be proven analogously. O
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3.2. The interstitial region.

Proof of Claim 3.6: Consider N > 0. Recall that we have a point z €
Q € W, and a vertical strip Sy = {w € C : |Re (w — 2)| < 2N/(Q)}.
Let Jo = m(Q) and let Jy be the dyadic interval of length 2NV/(Q)
containing Jy (see Figure 3.2).

FiGUrRE 3.2. Disposition in the proof of Claim 3.6
for N = 3.

Then it is enough to see that

n 14 JNn n—l
(3.12) (QBAD) SN[ Sn Y B (I)E(I)%K(JN)Q-
J0é§gJN
First note that
Re(z)+£(JN)
|(QZ,AQ)HSN|=/ |A— Rz, |dmy
Re(z)—4(JnN)

3.13 n n n
(313) < [ lA-Ry Jdm [ IR, R
3Jn 3Jn

=@d+2.

Trivially,
(3.14) = Biny (IN)U(In )2
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To deal with the second term, we consider the chain of dyadic intervals
JoC---C Jp CJk+1 C--- CJn,

with 0 < k < N and £(J;,) = 2¥¢(Jy). We use the Triangle Inequality in
the chain of intervals:

N— N—-1
(315 @< Y / IR, R = 3 R, R 1o
k=0 JN k=0

For any polynomial P(z) = >, a;xz" of degree n and any interval .J
centered at 0, using the linear map ¢ that sends the interval (—1,1) to J
as a change of coordinates, we have that

[1Pllzrcay = (P o llLr(-1,1),

and using the fact that all norms in a finite dimensional vector space are
equivalent (in particular the L'(—1,1) norm and the sum of coefficients)
we have that

1Pty =n Zﬁ )'lail.

By the same token, for any ky € N, we get

1Pl x 2r0.1y n 2500(T) Y (2500(T )" lail S 25TV Pl .

i=1
Fix 0 <k < N. Then

(Nt
IR, —RE @) Sa IRE,,,, — Rng||L1(3Jk)Wv

with constants depending only on n. Thus, we have that

IR5,,., —REy[lL1Giy)

" n ((Jn)"
(3.16) Sn (HR?,JHI - AHLl(SJk) + 1A - R3J,€HL1(BJIC)) 0(Jp)n 1
g J n+1
n (B (Jrg1) + /B(n)(Jk))e((J]Z))nﬂf(Jk)Q-

Combining (3.13), (3.14), (3.15), and (3.16) we get (3.12). O
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3.3. Domain bounded by a polynomial graph. We will consider
only very “flat” polynomials. Let us see what we can say about their
coefficients.

Lemma 3.7. Letn > 2, A € C" MY(R) with A(0) = 0, A'(0) = 0,
JAD | < g for j < '
3J C I =[—R, R]. Then we have the following bounds for the derivatives
of the approzimating polynomial P = R} A in the interval I:

n—j

3
< S

IPD | poo (1) for j <mn.

Furthermore, if p > 0 and 3J C [—p, p|, then

3n5p? 3 16p

(317) |‘PHL°°(—p,p) < and ||P,||L°°(—p,p) < R

Proof: By Remark 2.6 we know that there are at least n + 1 common
points 73, ...,70 € 3J for A and P, that is, A(T]Q) = P(TJQ) for every j.
By the Mean Value Theorem, there are n common points 74,...,7._; €
3J for their derivatives. By induction we find points 7§ --- 7% , € 3J
where the k-th derivatives coincide for 0 < k < n—1, that is, A(k)(T]k) =

(k)( k) for every 0 < j <n — k.

Note that the polynomial derivative P("™), which is in fact a constant,
coincides with the differential quotient of P("~1 evaluated at any pair

of points. In particular, given z € R, for the points 7~ Land 771 we
have that
N P(nfl)(Tn—l) _ P(nfl)(Tn—l)
P = [
To — T
B Ar=D (=) - A= (rp )
- 7_6171 _ ,7_177,71 — Rn-1

Now we argue by induction again. Assume that ||P(j+1)||Loo(]) <
3"J71§/R/ for a certain j < n — 1. Consider x € I, by the Mean
Value Theorem, there exists a point & such that |P@) (z) — PO (r])] =
|PUHD (&)||z — 7]|. Thus, since PY) (7)) = AU (7)), we have that

3n—i—lg § 3"

PO @)] < |PTE) lr=3 |+ AV (70)] < == 2R+ g =
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We have not used yet the fact that A’(0) = A(0) = 0. Let us fix
p < R and assume that 3.J C [—p, p]. Then for every = € [—p, p], we can
write A'(z) = A'(z) — A’(0) so

! " 6

(3.18) A @)] < A L= nylal < 5,
and we can also write P'(z) = P'(x) — P'(13) + A’(13) — A’(0), so
325 5 3" 15p
20+—p < .
R "TR'STR
By the same token, and using the estimate (3.18) on A’, we get

|P()] < 1P| oo (= poopy |2 — 701+ 1A [| Lo (= p, ) 170 |

|P'(@)] < 1P| (ny o =mg[+1A" | o= 1y 70 | <

gn— 15p 5p n6p2
< ——"9 . O
STR PTRPETR

Now we can prove Claim 3.5. Recall that we want to find a ra-
dius pijny < R depending on e such that every point z contained in a
Whitney cube Q C B (O7 p‘z‘“) satisfies (3.6), that is,

1+ 6)|’Y|
T xap, (2)] Sn —7—
pint
where v € {(—j1,72) : 41,72 € Ng and 71 — jo = n + 2} (recall that we
assumed that 75 > 0). According to the previous lemma, when n > 2
we are dealing with a domain Q% whose boundary is the graph of a

polynomial P(z) = Y77 ;a;z’ such that

36
ool = P(0)] < ¥t
3n—16 -
(3.19) la1| = |P'(0)] g%, and
P (0 3n—ig
|aj|:| ()|< for 2 < j < n.

4! ~ jIRITL
We call Qp :={x+iy:y > P(x)} to such a domain. Note that (3.17)
implies that for pi,, small enough the polynomial P is “flat”, namely
|P(z)| < 22t for 2] < pin.
One can think of the “exterior” radius pext below as a geometric
version of e, namely pext = (¢/16)? if € is small enough. Further, we
can assume that pext < R.
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Proposition 3.8. Consider two real numbers §, R > 0 and n > 2. For
Pext Small enough, there exists 0 < ping < pext depending also on n, 4,
and R such that for all ji,jo € Ng with j1 —jo =n+2, all P € P"
satisfying (3.19), all z € Q(0, pint) N Qp, and 0 < e < dist(z,00p) we
have

(3.20) /Q Eow dm(w)

C, J2
\B(ze) (7 —w)7 = <1 " 16/)‘1’/‘3) ’
P Z,€

int

with C,, depending only on n.
Ifn = 1 instead, then for all jy, jo € No with j1—jo = 3 and all P € P!
we have that

— )2
/ M dm(w) = 0.
Qp\B(ze) (2 —w)7

Proof: First consider n = 1. In that case 2p is a half plane. By rotation
and dilation, we can assume Qp = R% = {w = z +iy : y > 0}.

Note that % is infinitely many times differentiable with respect
to w in any annulus centered in z € R2 Then we can apply Green’s
formula (2.2) and use the decay at inﬁnity of the integrand and (3.2) to

see that for € > 0 small enough

— jlfS _ j173
/ % dm(w) = ¢;, / w div
R2\B(z,¢) (2 —w)i R (2 —w)i—t

When j; = 3 the last constant is zero. By induction, all these integrals

equal zero.
Now we assume that n > 2. Consider a given pexs > 0. We define the
interval I := [—pext, Pext), the exterior window Qext := Q(0, pext), and

the interior window Qi := Q(0, pint). Note that (3.19) implies that
for pext small enough, the set {x + i P(x) : © € I} C Qext, that is, the
boundary 0f2p, intersects the vertical sides of the window Q.. but does
not intersect the horizontal ones. The same can be said for the sides
of Qi (see Figure 3.3).
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QF
P
G —
[Pint
Qint I
| Pext
Qext

F1GUure 3.3. Disposition in Proposition 3.8.

Fix z € Qint and ¢ < dist(z,9Q). Splitting the domain of integration
in two regions we get

T\ —)
/ Gl / G=w )
Qp\B(ze) (2 — W) 2P\ Qe (2 — W)
- =0,
QpNQui\B(ze) (2 — W)

We bound the non-local part trivially by taking absolute values and
using polar coordinates. Choosing pint < pext/2, we have that

1 ey 1 1
Qp\Qext |Z - w"j17‘12 pext TI1J2 0

(3.22) :
o 2J1—j2—2
g1 G2 = 2 (Pext )12
where dm; stands for the Lebesgue length measure. Note that j; — jo —
2 =n.
To bound the local part, we can apply Green’s Theorem again and
we get

(3.21)

m(w).

1~ —w)i2
2(]171)/ w dm(w)
! QpQux\B(ze) (2 — w)J
w2
= / G=wp
lo—w|=e (2 —w)i—t
2 —w)iz
+ / (27“1)1 .
QP80 (72— W)™

/ (Z — w)jz .
— — QW
90PN Quy, (2 — w)i—t
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The first term in the right-hand side of (3.23) is zero arguing as
n (3.2). For the second term we note that z € Qjnt, and every w in
the integration domain is in 0Qext, SO |2 — W| > Pext — Pint. LThus
1 1
3.24 / _ _dw < Y
(3.24) QpNOQuy 12 — w1 =721 |ext — ping /177271

Summing up, by (3.21), (3.22), (3.23), and (3.24), since piny < 5%, we
— )2
/ M dm(w)
Qp\B(z,e) (2 — W)t

get that
=) C
/ (Emw)? w_)flder =,
90PN Qur, (2 — W) Pext
with C,, depending only on n.

It remains to bound the first term in the right-hand side of (3.25).
We begin by using the change of coordinates w = x +1i P(z) to get a real
variable integral:

W [P
(3.26) /mmgcxxz—w)ﬁld =T (P )

Note that the denominator on the right-hand side never vanishes because
z ¢ 00p. Now we take a closer look to the fraction in order to take as
much advantage of cancellation as we can, namely

(3.25) <

(z—(z—i P(x)))% ((2—z+2i P(m))—i—(z:—(ofzc—i—z'P(ac))))j2

(z=(z+iP(x))) =1 (z = (z +iP(z))) !

(3.27) = Z <]]2) (2—242i P(2)) (z— (z+i P(z)))2 = 71+1
=0

Z ]2 —2i Im( )+ 2i P(z))?
- T+ zP( )))n+1+j'

Next, we complexify the right-hand side of (3.27) so that we have a
holomorphic function in a certain neighborhood of I to be able to change

the integration path. To do this change we need a key observation. If
T € Qext, then |7| < V2pext and by (3.19) writing § = 3™ we have that

|P'(7)| < las| + 2|az||7] + -

(3.28) ~( pint 2 3
<4d 2Dex 20ex 1/2
<R+Rpt+R(p0+ )</
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if poxt is small enough. Thus, we have that Re(1 + i P'(1)) > % in Qext
and, by the Complex Rolle Theorem 2.2, we can conclude that 7 —
T+ P(7) is injective in Qext. In particular, z— (74¢ P(7)) has one zero
at most in Qexs, and this zero is not real because z ¢ 9Qp. Therefore,
since the real line divides Qext in two congruent open rectangles, there
is one of them whose closure has a neighborhood containing no zeros of
this function. We call this open rectangle R. Now, for any j > 0 we
have that 7 (zf((igi);%ggjlﬁlﬁ (1 — i P'(7)) is holomorphic in R, so
we can change the path of integration and get

27 (P(x) — Im(z))’ o
(3.20) /I(Z_Emi)ip(x))()glw (1—iP(z))da

— 27(P(7) — Im(2))’ .
N _/6R\1 (z = (1 +iP(r)))nt1+i (1 —iP(7))dr.

On the other hand, if |7| < v/2pext, then we have that

|P(7)] < lao| + lax||7| + lazllT|* + las||7® + - --

3.30 <5 (P g gy L op b L 2pa) +
( . ) >~ R R pext R pext R2 pext
3/2
S pe)/(t

for pext small enough. Then, taking absolute values inside the last inte-
gral in (3.29) and using (3.28) and (3.30), we get

27| P(1) — Im(2)|? o
3.31 q_ip J
(331 /872\1 |z — (7 +i P(r))| 1+ [1— i P'(7)]|dr]
< §/ 2 (Pi/c? + Pint )’ ).
= 2 Jorys |2 = (T P(7))|n 14

Finally, for any 7 € R\ I C 9Qext and pext small enough, we have
that

3 ex
= (i P)] > 7] =[] = [P(7)] = pese = V2pine =0l = P = 200
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Using this fact we rewrite (3.31) as

27| P(1) — Im(2)}? P ldr
08) | TG POl

/ .
3 ¥ int)’
<2 (pext +p t) : / |d’7’|
2 OR\I

(pext/2 - 2pint)n+1+j
Putting together (3.26), (3.27), (3.29), and (3.32) we can write

~ — )2
/ (271”)_1 dﬁ)'
90PN Qe (2 — W)
3/2 J .
Z _Peke P (Jz> i
(pext/2 2pln n+1 =0 pext/2 — 2ping J .

_ 6pext 142 pe)ét + Pint >
(pext/2 - 2pint)n+1 pext/2 2pint ’

3/2
ext J»

/ (Z_w)]zdw’ <&(1+16p1/2)j2
00PN Quy (2 — w)ir—1 e xt)

ext

and, choosing pint = min{pext/& 1%

(3.33)

where the constant C,, depends only on n.
Now, (3.25) together with (3.33) prove (3.20). O

Remark 3.9. Note that we have assumed 75 > 0 in the proof of The-
orem 3.2. When proving the case 72 < 0, we would have to prove
Proposition 3.8 with v € {(j1,—j2) : j1,J2 € No and ja — j1 = n + 2}.
The proof is analogous to the one shown above with slight modifications,
and it is left to the reader to complete the details.

3.4. Bounded domains: a localization principle. In this section
we use a standard localization procedure to deduce the following result
from Theorem 3.2.

Theorem 3.10. Letn € N, 1 < p < oo, let §, R > 0, and let Q be
a bounded (6, R)-C"~%! domain with parameterizations in BnJr1 e
Then, for any v € Z> \ {(—=1,—1)} with v +v2 = —2, we hcwe that

T7xq € W™P(Q) and, in partz'cular, for any e > 0, we have that
B30 IVl S O (N1 + 01+ 0P)

where C. depends on n, p, 6, R, the length of the boundary H(99),
and € but not on |7|.
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Note that the result above implies Theorem 1.1 as a particular case.

Along this section, we consider n € N, 1 < p < o0, §d >0, R > 0 to be
fixed. Let Q be a (6, R)-C™"~ 1! domain. To show that it satisfies (3.34)
we will find bounds for || D*T7xq/|| 1> (o) below, where a € N§ with |a| =
n. First of all, we need to find out who are the derivatives of T7xq that
we want to estimate. This is particularly important since, in order to use
Theorem 3.2, we will substitute Q by admissible domains SNI, which are
unbounded and, therefore, T7xg is not well-defined for those domains
when v, +72 = —2. We could avoid this problem by defining 77 in BMO,
but we will skip those technicalities and substitute DTY by T7~% as
our next lemma shows.

Lemma 3.11. Consider a bounded (5, R)—C ™11 domain Q and let us
fix v € Z2 with either y1 > 0 or vo > 0, and o € N3 with modulus |a|=n.
Then for z € Q we have

Crxa(z) ifvy=(m-1,-1) and o = (n,0)
ory=(-1,n—1) and a = (0,n),
DT31(z) =<0 ifoa >y >0o0ras >y >0

except in the previous case,
CyoTg “1(2)  otherwise,

where D% stands for the weak derivative in Q (see Figure 3.4). The
constants satisfy |Cy.o| < (17| +n)" and |Cy| < nl.

| | | | |
(—1.3) (1.3) | (2.3)
oy T TP

A
S S S 0, OO S S S

I I
| | | \Ts(zo’l)lw | |
I I I I I I I

i :Bgzl :Cnl :Tg(ZD’O)I: i

FIGURE 3.4. Diagram in Remark 3.12.
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Remark 3.12. The diagram in Figure 3.4 represents Tqy1 (with 77 rep-
resented in the horizontal axis and ~2 in the vertical one) and the re-
lations found in Lemma 3.11 between them via weak-derivation in €2,
O-derivation follows right-to-left direction, d-derivation follows top-to-
bottom direction. For instance, D(l’S)ng_l’?))l = 853T§(2_1’3)1 =cBaql.
Note that Tg]’j)l for j # —1 are anti-analytic, while Tg(zj’o)l for j # —1
are analytic.

Proof: Let us assume that 75 > 0. If 453 > 0 as well, differentiating a
polynomial under the integral sign makes the proof trivial, so we assume

v1 < —1. Recall that we write w” = ww??. For every z € ) choose
e, = dist(z,00)/2. By (3.3), Green’s formula, and (3.2) we get that

3.35) Ta1(z :/ z=w)Y dm(w :7/ 2#w) 7 TOD gy,
(3.35) Tg1(2) Q\B(Z,EZ)( )" dm(w) i 1) OQ( )
and we can differentiate under the integral sign.
If 79 > ag, then we have
i o1 (72 + 1)'
(_1) - |
2(12+1) (2 —az +1)!

7

DTg1(z) =

L nta—1) / (2 — w) =D gy,
(=m =!I Jag

Since 72 —ag > 0 and 11 — a3 < 0, we can apply (3.35) to v — « instead
of v and, thus,
(2 —a2)! (= —1)!

If v9 + 1 = ao we must pay special attention. In that case differenti-
ating under the integral sign in (3.35) we get

apy i aq ( )' (_ +a _1)! y—a 1
DT31(z) = 5(-1) (WJ;H)! (”71%711)! /m(z_w) +(0.1) gy,

DOT1(2) = (~1)™

1
=Cha | e dw,
” /a (z—w) e

where |Cy o] < (|y] +n)". If, moreover, y1 — oy < —2, we can use (3.2)
and Green’s Theorem to write

1
DHTgHE) = Cre /¢9§2UBB

(0,e,) (2 —w) it

= C%a/ 0dm(w) = 0.
Q\0B(0¢.)

(3.36)
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Otherwise, that is, if 7o + 1 = ag and 3 — a3 = —1, then a = (0, n) and
v =(—1,n—1). This implies that

1
o0 (z —w)
with |Cy| < (n —1)!. Let us remark the fact that v = (—1,0) together
with o = (0, 1) is the case of the J-derivative of the Cauchy transform,

which is the identity.
Finally, if 79 < ag — 1, then differentiating (3.36) or (3.37) we get

DT31(z) = 0.

(3.37) DTg1(z) = Ch dw = Cpxa(?),

One can argue analogously if v; > 0. O

Proof of Theorem 3.10: Let Q be a (8, R)-C"~ %! domain and let v € Z2\
{(-=1,-1)} with 71 +72 = —2 and @ € N? with |a| = n. By Lemma 3.11,
if v — o has two negative coordinates, D*Tj1 agrees with a constant
(either null or not bounded by C,) on Q and, thus, (3.34) follows.

Q

FIGURE 3.5. Decomposition of { in the proof of The-

orem 3.10. The inner region €y appears in the figure
above the bold red line, while the family {B, N} ap-
pear in green.

Therefore, we can assume that
(3.38) DT31 = C,y 0 TH1,

with |Cy o] < (|y|+n)" and v4 +vs = —n — 2 with v; - v, < 0. Let
0<pe < % to be chosen as in Theorem 3.2. Let us divide 2 in several
subregions, one of them away from the boundary, say

Qo == {z € Q : dist(z,00) > %} ,
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and the rest being contained in small balls By := B(zx, pe), centered in
the boundary point zx, with controlled overlapping (namely, we require
that the family {{By} is disjoint while the family {By} covers 0%,
see Figure 3.5) so that the boundary of  coincides, after rotation and
translation, with the boundary of a (d, R, n, p)-admissible domain €, in
the strip (—6pe,6p.) x R (this is possible by Definitions 2.1 and 3.1).
Then we have that

(3.39) ITE o) < NTE Loy + D ITEL Lo (Bune)-
k

The term corresponding to the central region is an error term. Namely,
for z € 0y we have that

1 1
1) < [ o () £
@ |lw—2z|>pe/5 |’U) - Z|n+2 P
and, therefore,
5 1 1
(3.40) 1T @iy S 127

For the peripheral regions (i.e., close to the boundary of the domain),
we use
T8 2o mem0) = 1T o i
(3.41)

<IN i auntio [T 0036,

where we wrote €, for the preimage of € by the corresponding rigid
movement (see Figure 3.6).

FI1GURE 3.6. Disposition of the domains  and Qr in
the proof of Theorem 3.10 before the rotation and the
translation.

Arguing as we did with the central region, we have that

(3.42) HT”(XQ - Xg,)

1
- S —lBinaly.
Lp(BkﬂQk) pg
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Finally, for the other term, we use Theorem 3.2. Consider Ay to be the
defining function of ;. Then by Theorem 3.2 we have that

(349) 1%, B 5,0, <€ (148 e

Putting together (3.39) and (3.41) with (3.40), (3.42), and (3.43), we
get

2-np (| 4¢P
Cspospey TP 1T )

T8 0y < € (WA A4 ).

This fact, together with (3.38) and Lemma 2.12, shows (3.34). O

(—5pe,5p¢,)

3.5. The case p > 2. From [PT, Theorem 1.1], we have the following
corollary.

Corollary. Let p > 2, n > 1, let Q C C be a bounded Lipschitz do-
main and let v € Z*\ (=1, —1) with y1 +v2 = —2. Then the following
statements are equivalent:

a) The truncated operator T, is bounded in W™P ().

b) For every polynomial P of degree at most n — 1, we have that
To(P) € W™P(Q).

We will use a quantitative version of this corollary. We state it below
without proof. We refer the reader to [PT, pp. 2965-2969] for the details.

Let us ﬁX some notation. Given a multiindex A € N2, we write
Py(2) = 2N 272 that is, Py(2) = 2*.

Corollary 3.13. Letp > 2, n > 1, let Q C C be a Lipschitz domain,
and let v € Z%\ (=1, —1) with y1 +v2 = —2. Then

(3.44) V"I fllLr(e) Sn <||T”||LP—>LF+C6||K loz

+ ) anTS’)YP)\"LP(Q))”f'W"%P(Q)v

[Al<n
where we wrote

1Ky oz = sup V7K, (2)]]21 72
j<n,zeC\{0}

Using Theorem 3.10 and Corollary 3.13, we will prove the following
theorem, which in particular implies Theorem 1.2.
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Theorem 3.14. Considerp > 2, n > 1, and let ) be a bounded Lipschitz

domain with parameterizations in BnJr1 VP Then for every € > 0 there
exists a constant C, such that, for every multiindex v € Z*\ {(—1,-1)}
with 1 4+ v2 > —2, one has

(345) [ Tlwes oy srpsnsiossany < CopmH747:52
x (”NHBS,;”P({)Q) + (]. + 6)|7|> —+ diam(Q)Vl"r"/z'i‘Q.

In particular, for every m € N we have that the iteration of the Beurl-
ing transform (B™)q is bounded in W™P(S2), with norm

(3.46) (B™)allwrs(@)swr@) < Cam™ L (INl] o1/ oy +(1+ ™)

Proof: Note that by (2.7), we have that B{J}:l‘”” C B&T&O‘Q/” and,

since 1 —2/p > 0, we also have that B 2p = omi-2/p (see [Tri2,
Section 2.5.7]) so € is in fact a (8, R)-C" 1 !-domain, where § and R
depend on the size of the local parameterizations of the boundary and
on ||N||Bn 1/r 0y T H1(0R). Therefore, we can use Theorem 3.10.

First we study the case 71 +72+2 = 0. Consider a given v €
72 \ {(-1,-1)} with 93 + 72 = —2. Recall that for m # 0, B™ =
EUmp(-m=1,m=1) py (2.13). The proof of the L? boundedness of
these operators with norm smaller than C, m? can be found in [AIM,
Corollary 4.5.1]. Thus, form =2+ 1= M , we have that

(3.47) 1T o r = Ellgmllm—m <l

On the other hand, a short computation shows that

(3.48) [ llez = sup [V, (2)][2]F2 < y]™,
j<n,zeC\{0}
with constant depending on n.
In order to use Corollary 3.13, it only remains to check the bounds for
| DTG Pal| e for all multiindices o, A € N3 with |a| = n and [A| < n.

Using the binomial expansion w? = ZV</\(—1)‘”|(,§) (z —w)"2 ", we
can write -
A
PGt [ eyt dnw= 3 0M(0) A1)
0 a\B.(2) <o v

Differentiating (and assuming that 0 € Q) we find that

V'GP (2) S 2" ) Z 1+ diam(Q))"|VITY T 1(2)|
0<v<AJ=0
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and, thus, by the equivalence of norms in the Sobolev space (2.1), we
have that

||V”T3P>\HLP @) <a Z (||Vn+|u\T§v2+u1”1£p(Q) + |‘T3+V1||Lp(g )
O<v<A
with constants depending on n, p, and the diameter and the Sobolev

embedding constant of 2. By Lemma 3.11 and Theorem 3.10, we have
that

T3Py S IV + (140)
(349) YSv<v+A

S I, ).
YSv<y+A

The Young Inequality (2.3) implies that for all functions f € LP and
ge L', | f«glle <|Iflleellgllz:. Thus, for v < v <~ + A we have that

(3.50) |76 fllze < diam(Q)" 22| £ o,

and taking f = o, [|T51]%, < 1+ diam(Q)"~YP+2. For v = ~, the
same holds with a slightly worse constant by (3.47). Namely,

(3.51) 1T flle < Colylll £l Lo

Since p > 2, putting (3.44), (3.47), (3.48), (3.49), and (3.50) and
(3.51) together, we get

IV T llwnr@)—ir@) SIEY oz + 1T | e 1o

+ ) IVHTaPY) @)
[Al<n
(3.52)

S+ (N g1 oy (146 )

S (Nl g1/ gag) + L+ €M),

with constants depending on n, p, 6, the diameter of €2, its Sobolev
embedding constant, and ¢, but not on . The estimate (3.52), together
with (3.51) proves (3.45) when 1 +v2 = —2 and (3.46) for every m > 0.

It remains to study the operators of homogeneity greater than —2. In
that case we will see that we can differentiate under the integral sign to
recover the previous situation. Fix + € Z2 such that v; +7v2 +2 > 0.
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By (3.50) we have that ||Tg fl|lr» < diam(Q)"72%2||f|| .. Thus, to
prove (3.45), it suffices to see that for f € W™P(Q) we have

[V 2T | oy < Cly |22
% (INll gy 17500y + 1+ M) 1 fllwnoe).

Since we have shown (3.45) for operators with 3 + 2 +2 = 0, it is
enough to check that for any v € NZ with |v| = v + 72+ 2 and 2z € Q,
we have

Coxal()f(z) i y=(v] - 1,-1) and v=(}v,0)
or y=(—1,|v| = 1) and v=(0, |v|),
(3.53) D'T f(2)=10 ifry >y >00r e >79 >0
except in the previous case,
Co,To " f(2) otherwise,

with [Cy, [Coq| S (] + Iv).
To prove this statement, take v < v —(1,0), and note that the partial
derivative is

0. T "f(2) —i0,Tg " f(2)

o1y " (2) = .
o T )R TG SE)E)
h—0 2h
+ i T I+ i) T~ FE)E)
h—0 2ih

+ 0T “1(2)f(2)

:Z++7

where h is assumed to be real. Now, the principal value is not needed
because 1 — a1 + 72 —as > —2; s0

o (+h—w)™* = (z—w)"*)[f(w) — f(z)]

Moreover, since f € C%? for a certain ¢ > 0 by the Sobolev Embedding
Theorem, we get

- (12 h— w72 + |2 — wf=) |f(w) - f(2)
h—0 B(z,2|h]) 2h

dm(w) = 0.
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On the other hand, using the Taylor expansion of order two of (z —w +
)Y~ around 0, there exists € = e(h, w, z) with |¢| < h such that

- }ILILI}) B2l (agc(z —w ;— ~)’Y—04(0) + 63(2: —w _; .)’Y—oe(g)h>
| % (f(w) — f(2)) dm(w).

Arguing analogously for , we get that

+ |10 = }lLim (71 — 1) (z — w) =270 £ (w) dm(w)

—0Ja\B(z,2|n))
— lim (11— a1)(z — w) 0D dm(w) f(2)
h=0J0\B(z,2|h|)

(when taking limits, the Taylor remainder vanishes by the Holder conti-
nuity of f). If 94 — a3 = 0 then this part is null and will be also null

unless 72 — as = —1 by Lemma 3.11. Otherwise, the last term coincides
with and they cancel out. By induction, we get (3.53). O

A. Appendix
We prove the following:

Lemma A.1. Letn > 1,5, R > 0, let Q be a bounded (6, R)—C"~ 11 do-
main, and let {Qx} 1L, be a collection of R-windows such that {55k},
cover the boundary of Q and {4—10Qk}k are disjoint. Let {Ap}r be the
parameterizations of the boundary associated to each window. Then for
any 1 <p < oo

M M
Ay, I)P
z : § : ’8(")( b ) S E ||Ak||p'n+171/
ez~ By3' TP (51R)
(A1) k=1leD:ICiIr k=1

< p
~ HNHB;,;l/P(aQ)’

where Ig stands for the interval (—R, R). The constants depend on n,
p, 8, R, and the length of the boundary H'(09).

Note that M ~ w.

Proof: By (2.10) the first estimate in (A.1) is immediate.

Let us write s :=n — % and {s}:=1— %. Given t € R, we write I; for
the interval tIg. To prove the second estimate in (A.1), using the ex-
pression (2.9) to express the Besov norm in terms of differences together
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with the fact that

| Ak||? AP

Bs+1( 1/3) ~ B{ }(I 5)

(that is, the so-called lifting property, see [Tri2, Theorem 5.2.3/1])
and using an appropriate cut-off function xr,,, < ¢ < Xr15,,, We get

HAEC”)IIB;} (1h5) S < [lpAY" IIB{ 1, 50

AP (z) — A ()P
AplBoir S 14 g dy d
600, % [ PSR s
— P
Iz 1, |z — y[ts1p
2)|
—|—2//12/c Ix_y‘{s}p-',-ld ydx

AP () — AD ()
/ / | = }k+$y)| dydz + 1.
Iy I, |z — 3/| P

Note that the error terms are absorbed by an additive constant which
depends on the C"~! constants of the parameterization Ay, that is,
on § and R, uniformly bounded by hypothesis. Next, using (2.8), the
lifting property again and some computations, one can express the norm
of the normal vector as

Ap(N o 2)=D ()P dh
A3 NI, ~1+// | — dt,
(43) INIz; , 00 21 Ihl{ s} Al

(A.2)

where I is the interval of length H!(9) centered at the origin.

Finally, to compare (A.2) and (A.3), we will use the functions
1
Ni(2) = ——=(A}.(2), -1
(@) = s (AL )

(that is, for each k we take the normal vector to the graph of the k-th pa-
rameterization of the boundary at (x, Ax(x))), to make an intermediate
step. Namely, we will show that

NV @) - N )l
AR, o S / / dydx+1
2 Z || SN (I s) Z [ |x— \{ stp+1

SINWG, o0

(A.4)

)
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We begin by the first inequality. Let us write fix a window Q.
By (A.2), it only remains to check that

/ / |ARAY ()P dh
dx
Iyjp v 1o~ |h|{ sip |h|

p

/ / ‘ - )( ) dh dr+1
i .
Iijp V11— |h|{ stp |h‘

To do so, we need to relate AhAfc")(x) and AhNIE"_l)(x). We can write

Ni(x) = (N (2), Ni2(2)) = g(2) (A} (z), —1),

with
(2) ! and, thus
r) = ——————= and, thus,
. T+ Ap(2)?
Al(x) A (x
(o) = — DR ) ()
1+ A (z)

First we note the trivial pointwise bounds of the derivatives of g;. The
first two bounds are obvious and the rest of them can be deduced by
induction,

1

lgx (z)] = |1+A;€(x)2 S

(0] = |47 0) A (@) (0)°] <

‘9(])( )| < % for all j < n.
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Analogously, we have similar bounds for the multiplicative inverse of gy,
glc = 9%7
gk ()] < V1+ 62
- 52
19k ()] = lg (@) A3 (2) Ai (2)| <
~(j Cs .
|g,ij)(x)| < il for every j < n.

Thus, for the k-th window normal vector

. . Ca '
NG @) = o ()] < 25 for all j < n and
(4) N (i41) (=)
V)= |3 (1) A @ed
1=0
11 1
6. Z R Ri—i ~ i for all j < n.
=0

Summing up, we have that

. . . . 1

+1 ~ .
(A5) AT oo 93” zow 13 e 1N N S 57 for G <.

Therefore, using the Mean Value Theorem one gets

. . (i . h
(A6) 18040 ()] 1809l (@) 18070V @) |AWNE D w1
for j < n.

Now we want to control |AhA§€n)(m)| by an expression in terms of the
differences of the derivatives of the normal vector, with x,z + h € I 5.
We have that

n—1
n— n—1 7 n—1—1:
M =3 (M)A @ )

- (3
=0

Thus, solving for A](Cn)(x) we get

o N @) = S () A @g Y @)
Ay (@) =
gr ()

)
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and taking differences

(A7) (A4 (@) S ]Ahw,iﬁ‘”ak)(x)\

+Z‘A erl) n 1— l)gk)(x) .

On one hand, using (A.5) and (A.6) we have that

n—1)~ ~ n—1 n—1 ~
AR V50 @) < 1kl AN @)+ NGVl 180G )]

1 |hl
Rr-1 R
On the other hand, if we consider 0 < 1 < n— 2, we obtain analogously

S1AWNTT V(@) +

A A5 @) S A AL @)
(n—1—1)
+ﬁ|Ahgk (I)H_R" 71 ARGk ()]
1 |A] 1 |h 1 |h|

< — Lt §

~ Rn—1—i Rit+l Rt R(n—1) Rr—1 R~
When ¢ = 0, instead, using that Négﬁl)(x) = —g,(cnfl)(a:), we obtain
that

AN V5) ()| S gy 1AL ()] A () A0
1 |n| n—1 1 |n]
’SRn 1R + A ng2 )( )|+R”*1§'
Back to (A.7), we have deduced that
n n— h
804 @) S 18NSV )]+ 0
Applying this result, we obtain that
AN (@)
Os [ [ Bl Ol
11/2 11/2 T |h|{ }p
Lo npp
A. — ————dh d
(A.8) + Rnp /_R R 53 » x
N(” 1) N(”*l) p
/ / | k - (y)‘ dyd$+R1_5p-
Lo J1hys |37—y‘{ sypt

The first inequality in (A.4) is obtained summing in k.
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To prove the second one, note that t = 7(x) = [; gr is the arc
parameter of the curve, since
de. 1 1
dt gr(z) 1+ Al (2)?

Thus, we have that Nj(t) = Ny (17 '(t)) is the normal vector (to the
graph of the k-th parameterization) parameterized by the arc. Of course,
we have that N (z) = Ni(7i(z)). Therefore,

Ni(x) = Ni(mi(@))7h(x) = Ni (i (2)) gk (x)
and, by induction, for j < n — 1 we get

(A.9) (J)( ) = ZN(l (14(z Z c, H~(al (z).

i=1 aENl_ =1
loe|=j—i

Solving this equation for 1\7,9) and using (A.5), for j < n — 1 we have
that

oy 1

(A.10) 1N oo ) < i

Taking t = 74(z) and h = 7,(y) — 7(2), and applying (A.9), we get
n— n—1

NP ) - N @)

7(n—1 ~ —
< |AGNS V()] |Gkl =t

n—2
ST @ S CHH*’*

Jj=1 aeN?
lal=n—1—j

n—1 7
Y IN e ST T @) =3 @)l e
j=1

aEN’ i=1 i
la|=n—1—j

Using (A.5), (A.6), and (A.10) we get
AN OG0 S 1A N D)),

for all j <n —2 and |oz|=n—1—jweget

Lo

4] 0]

1
AN (#) |H|| 3" Nl < RN Ral < el = B
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and, for alljgn—l o =n—1—7, we get

S0) 39 (@)=5 @) 7 Lle—y 1 |3
| N, oo E;ZI;II WIge " Iz 1> S 57 partt pama S g

Thus,

n— n— T (n— |h‘
NG (@) = NV )] S 18NV 01+

Therefore, ubing the bilipbchitz change of variables t = 7,(z) and h =

Te(Y) — Tk( , we have that
N(n 1) N(nfl) p
@ / / {s } 1 W) dydx + R'™*P
Iy J1y2 |x - I p
(A.11) AN gy =0 R
/ / S SOl — dh dt
(I1y2) Y i (I1/2)— |h‘{5}17+1 Rnp|h|{8}17+1

+ R,
Taking sums on 1 < k < M and using (A.2), (A.8), and (A.11) we get

M
p
; HAkHB;y(ll/g)

n—1
VYSRGS
5 hdt + R
k=1 Tk(ll/Q) Tk(11/2) t ‘h|{ }p+1

4 Rl—sp.
According to our definitions, for each k and t € 7x([;/2) we have that
Ni(t) coincides with a fixed rotation of N oz(t+z"1(2;)) where 271 (z)

is assumed to be chosen in I. That is, IV} coincides with a fixed rotation
of N: Q — S! parametrized by the arc z: 21 — 02 for values close

to 271(2;) and pre-composed with a translation. Namely, Nén_l)(t) =
e (N o 2)" D (t + 27 (2)) and

M
D IA?
k=1

Byt (1 3)

sf/

k=1YT

dh dt

/ [Az(No2)" D (t427 (m1))P
w(Ly2) (11 2) |h|{s}pt1

+ MR'™#P,
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Changing variables, we get

|AL(N o 2)= V()| dh
ZHAk”Bg"'l([ //21 |h|{9}p mdt

~ ||V %;,p(asz)-

O

Remark A.2. Arguing analogously one can show that

N
p < p
B3 (09) ~ ; ”AkHB;ﬂ;}([l) + 1.

By (A.4) and [Mar, Theorem 3], we have that this condition is equivalent
to N being in the trace space of W™P ().
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