Open Access
May 2021 Algebraic independence of certain infinite products involving the Fibonacci numbers
Daniel Duverney, Yohei Tachiya
Proc. Japan Acad. Ser. A Math. Sci. 97(5): 29-31 (May 2021). DOI: 10.3792/pjaa.97.006

Abstract

Let $\{F_{n}\}_{n\geq0}$ be the Fibonacci sequence. The aim of this paper is to give explicit formulae for the infinite products $$\begin{equation*} \prod_{n=1}^{\infty}\left( 1+\frac{1}{F_{n}}\right) ,\quad\prod_{n=3}^{\infty}\left( 1-\frac{1}{F_{n}}\right) \end{equation*}$$ in terms of the values of the Jacobi theta functions. From this we deduce the algebraic independence over $\mathbf{Q}$ of the above numbers by applying Bertrand’s theorem on the algebraic independence of the values of the Jacobi theta functions.

Citation

Download Citation

Daniel Duverney. Yohei Tachiya. "Algebraic independence of certain infinite products involving the Fibonacci numbers." Proc. Japan Acad. Ser. A Math. Sci. 97 (5) 29 - 31, May 2021. https://doi.org/10.3792/pjaa.97.006

Information

Published: May 2021
First available in Project Euclid: 27 April 2021

Digital Object Identifier: 10.3792/pjaa.97.006

Subjects:
Primary: 11B39 , 11F27 , 11J85

Keywords: algebraic independence , Fibonacci numbers , Jacobi theta functions

Rights: Copyright © 2021 The Japan Academy

Vol.97 • No. 5 • May 2021
Back to Top