Abstract
Let $\{F_{n}\}_{n\geq0}$ be the Fibonacci sequence. The aim of this paper is to give explicit formulae for the infinite products $$\begin{equation*} \prod_{n=1}^{\infty}\left( 1+\frac{1}{F_{n}}\right) ,\quad\prod_{n=3}^{\infty}\left( 1-\frac{1}{F_{n}}\right) \end{equation*}$$ in terms of the values of the Jacobi theta functions. From this we deduce the algebraic independence over $\mathbf{Q}$ of the above numbers by applying Bertrand’s theorem on the algebraic independence of the values of the Jacobi theta functions.
Citation
Daniel Duverney. Yohei Tachiya. "Algebraic independence of certain infinite products involving the Fibonacci numbers." Proc. Japan Acad. Ser. A Math. Sci. 97 (5) 29 - 31, May 2021. https://doi.org/10.3792/pjaa.97.006
Information