Daniel Duverney, Yohei Tachiya
Proc. Japan Acad. Ser. A Math. Sci. 97 (5), 29-31, (May 2021) DOI: 10.3792/pjaa.97.006
KEYWORDS: algebraic independence, Fibonacci numbers, Jacobi theta functions, 11J85, 11B39, 11F27
Let $\{F_{n}\}_{n\geq0}$ be the Fibonacci sequence. The aim of this paper is to give explicit formulae for the infinite products $$\begin{equation*} \prod_{n=1}^{\infty}\left( 1+\frac{1}{F_{n}}\right) ,\quad\prod_{n=3}^{\infty}\left( 1-\frac{1}{F_{n}}\right) \end{equation*}$$ in terms of the values of the Jacobi theta functions. From this we deduce the algebraic independence over $\mathbf{Q}$ of the above numbers by applying Bertrand’s theorem on the algebraic independence of the values of the Jacobi theta functions.