Open Access
January 2020 The second moment for counting prime geodesics
Ikuya Kaneko
Proc. Japan Acad. Ser. A Math. Sci. 96(1): 7-12 (January 2020). DOI: 10.3792/pjaa.96.002
Abstract

A brighter light has freshly been shed upon the second moment of the Prime Geodesic Theorem. We work with such moments in the two and three dimensional hyperbolic spaces. Letting $E_{\Gamma}(X)$ be the error term arising from counting prime geodesics associated to $\Gamma = \mathrm{PSL}_{2}(\mathbf{Z}[i])$, the bound $E_{\Gamma}(X) \ll X^{3/2+\epsilon}$ is proved in a square mean sense. Our second moment bound is the pure counterpart of the work of Balog \textit{et al.} for $\Gamma = \mathrm{PSL}_{2}(\mathbf{Z})$, and the main innovation entails the delicate analysis of sums of Kloosterman sums. We also infer pointwise bounds from the standpoint of the second moment. Finally, we announce the pointwise bound $E_{\Gamma}(X) \ll X^{67/42+\epsilon}$ for $\Gamma = \mathrm{PSL}_{2}(\mathbf{Z}[i])$ by an application of the Weyl-type subconvexity.

References

1.

O. Balkanova, D. Chatzakos, G. Cherubini, D. Frolenkov and N. Laaksonen, Prime geodesic theorem in the 3-dimensional hyperbolic space, Trans. Amer. Math. Soc. 372 (2019), no. 8, 5355–5374. 07121875 10.1090/tran/7720O. Balkanova, D. Chatzakos, G. Cherubini, D. Frolenkov and N. Laaksonen, Prime geodesic theorem in the 3-dimensional hyperbolic space, Trans. Amer. Math. Soc. 372 (2019), no. 8, 5355–5374. 07121875 10.1090/tran/7720

2.

O. Balkanova and D. Frolenkov, Bounds for a spectral exponential sum, J. Lond. Math. Soc. (2) 99 (2019), no. 2, 249–272. MR3939255 07053661 10.1112/jlms.12174O. Balkanova and D. Frolenkov, Bounds for a spectral exponential sum, J. Lond. Math. Soc. (2) 99 (2019), no. 2, 249–272. MR3939255 07053661 10.1112/jlms.12174

3.

O. Balkanova and D. Frolenkov, Sums of Kloosterman sums in the prime geodesic theorem, Q. J. Math. 70 (2019), no. 2, 649–674. MR3975527 07086680 10.1093/qmath/hay060O. Balkanova and D. Frolenkov, Sums of Kloosterman sums in the prime geodesic theorem, Q. J. Math. 70 (2019), no. 2, 649–674. MR3975527 07086680 10.1093/qmath/hay060

4.

A. Balog, A. Biró, G. Cherubini, and N. Laaksonen, Bykovskii-type theorem for the Picard manifold, arXiv:1911.01800. 1911.01800A. Balog, A. Biró, G. Cherubini, and N. Laaksonen, Bykovskii-type theorem for the Picard manifold, arXiv:1911.01800. 1911.01800

5.

A. Balog, A. Biró, G. Harcos and P. Maga, The prime geodesic theorem in square mean, J. Number Theory 198 (2019), 239–249. 07005769 10.1016/j.jnt.2018.10.012A. Balog, A. Biró, G. Harcos and P. Maga, The prime geodesic theorem in square mean, J. Number Theory 198 (2019), 239–249. 07005769 10.1016/j.jnt.2018.10.012

6.

V. A. Bykovskiĭ, Density theorems and the mean value of arithmetical functions in short intervals (Russian), Zap. Nauchn. Semin. POMI 212 (1994), 56–70, translation in J. Math. Sci. (N.Y.) 83 (1997), no. 6, 720–730.V. A. Bykovskiĭ, Density theorems and the mean value of arithmetical functions in short intervals (Russian), Zap. Nauchn. Semin. POMI 212 (1994), 56–70, translation in J. Math. Sci. (N.Y.) 83 (1997), no. 6, 720–730.

7.

Y. Cai, Prime geodesic theorem, J. Théor. Nombres Bordeaux 14 (2002), no. 1, 59–72.Y. Cai, Prime geodesic theorem, J. Théor. Nombres Bordeaux 14 (2002), no. 1, 59–72.

8.

G. Cherubini and J. Guerreiro, Mean square in the prime geodesic theorem, Algebra Number Theory 12 (2018), no. 3, 571–597. MR3815307 1422.11122 10.2140/ant.2018.12.571 euclid.ant/1532743365G. Cherubini and J. Guerreiro, Mean square in the prime geodesic theorem, Algebra Number Theory 12 (2018), no. 3, 571–597. MR3815307 1422.11122 10.2140/ant.2018.12.571 euclid.ant/1532743365

9.

H. Iwaniec, Prime geodesic theorem, J. Reine Angew. Math. 349 (1984), 136–159. MR743969 0527.10021H. Iwaniec, Prime geodesic theorem, J. Reine Angew. Math. 349 (1984), 136–159. MR743969 0527.10021

10.

I. Kaneko, The prime geodesic theorem for $\mathrm{PSL}_{2}(\mathbf{Z}[i])$ and spectral exponential sum, arXiv:1903.05111. 1903.05111I. Kaneko, The prime geodesic theorem for $\mathrm{PSL}_{2}(\mathbf{Z}[i])$ and spectral exponential sum, arXiv:1903.05111. 1903.05111

11.

I. Kaneko, Spectral exponential sums on hyperbolic surfaces I, arXiv:1905.00681. 1905.00681I. Kaneko, Spectral exponential sums on hyperbolic surfaces I, arXiv:1905.00681. 1905.00681

12.

I. Kaneko and S. Koyama, Euler products of Selberg zeta functions in the critical strip, arXiv:1809.10140. 1809.10140I. Kaneko and S. Koyama, Euler products of Selberg zeta functions in the critical strip, arXiv:1809.10140. 1809.10140

13.

S. Koyama, Prime geodesic theorem for the Picard manifold under the mean-Lindelöf hypothesis, Forum Math. 13 (2001), no. 6, 781–793. MR1861249 1061.11024 10.1515/form.2001.034S. Koyama, Prime geodesic theorem for the Picard manifold under the mean-Lindelöf hypothesis, Forum Math. 13 (2001), no. 6, 781–793. MR1861249 1061.11024 10.1515/form.2001.034

14.

W. Z. Luo and P. Sarnak, Quantum ergodicity of eigenfunctions on $\mathrm{PSL}_2(\mathbf{Z})\backslash \mathbf{H}^{2}$, Inst. Hautes Études Sci. Publ. Math. 81 (1995), no. 1, 207–237. MR1361757 10.1007/BF02699377W. Z. Luo and P. Sarnak, Quantum ergodicity of eigenfunctions on $\mathrm{PSL}_2(\mathbf{Z})\backslash \mathbf{H}^{2}$, Inst. Hautes Études Sci. Publ. Math. 81 (1995), no. 1, 207–237. MR1361757 10.1007/BF02699377

15.

Y. Motohashi, A trace formula for the Picard group. I, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 8, 183–186. 0876.11021 10.3792/pjaa.72.183 euclid.pja/1195510241Y. Motohashi, A trace formula for the Picard group. I, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 8, 183–186. 0876.11021 10.3792/pjaa.72.183 euclid.pja/1195510241

16.

Y. Motohashi, Spectral theory of the Riemann zeta-function, Cambridge Tracts in Mathematics, 127, Cambridge University Press, Cambridge, 1997. 0878.11001Y. Motohashi, Spectral theory of the Riemann zeta-function, Cambridge Tracts in Mathematics, 127, Cambridge University Press, Cambridge, 1997. 0878.11001

17.

Y. Motohashi, Trace formula over the hyperbolic upper half space, in Analytic number theory (Kyoto, 1996), 265–286, London Math. Soc. Lecture Note Ser., 247, Cambridge Univ. Press, Cambridge, 1997. 0910.11021Y. Motohashi, Trace formula over the hyperbolic upper half space, in Analytic number theory (Kyoto, 1996), 265–286, London Math. Soc. Lecture Note Ser., 247, Cambridge Univ. Press, Cambridge, 1997. 0910.11021

18.

M. Nakasuji, Prime geodesic theorem via the explicit formula of $\Psi$ for hyperbolic 3-manifolds, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 7, 130–133. 1028.11032 10.3792/pjaa.77.130 euclid.pja/1148393038M. Nakasuji, Prime geodesic theorem via the explicit formula of $\Psi$ for hyperbolic 3-manifolds, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 7, 130–133. 1028.11032 10.3792/pjaa.77.130 euclid.pja/1148393038

19.

P. Nelson, Eisenstein series and the cubic moment for PGL$_{2}$, arXiv:1911.06310. 1911.06310P. Nelson, Eisenstein series and the cubic moment for PGL$_{2}$, arXiv:1911.06310. 1911.06310

20.

P. Sarnak, The arithmetic and geometry of some hyperbolic three-manifolds, Acta Math. 151 (1983), no. 1, 253–295. 0527.10022 10.1007/BF02393209 euclid.acta/1485890267P. Sarnak, The arithmetic and geometry of some hyperbolic three-manifolds, Acta Math. 151 (1983), no. 1, 253–295. 0527.10022 10.1007/BF02393209 euclid.acta/1485890267

21.

A. Selberg, Collected papers, Springer Collected Works in Mathematics, vol. 1, Springer-Verlag, Berlin, Heidelberg, 1989. 0675.10001A. Selberg, Collected papers, Springer Collected Works in Mathematics, vol. 1, Springer-Verlag, Berlin, Heidelberg, 1989. 0675.10001

22.

K. Soundararajan and M. P. Young, The prime geodesic theorem, J. Reine Angew. Math. 676 (2013), 105–120. MR3028757 1276.11084K. Soundararajan and M. P. Young, The prime geodesic theorem, J. Reine Angew. Math. 676 (2013), 105–120. MR3028757 1276.11084

23.

N. Watt, Spectral large sieve inequalities for Hecke congruence subgroups of $\mathit{SL}(2,\mathbf{Z}[i])$, J. Number Theory 140 (2014), 349–424. 1312.11032 10.1016/j.jnt.2014.01.018N. Watt, Spectral large sieve inequalities for Hecke congruence subgroups of $\mathit{SL}(2,\mathbf{Z}[i])$, J. Number Theory 140 (2014), 349–424. 1312.11032 10.1016/j.jnt.2014.01.018

24.

H. Wu, Burgess-like subconvexity for, for $\mathrm{GL}_{1}$, Compos. Math. 155 (2019), no. 8, 1457–1499. MR3977317 07077744 10.1112/S0010437X19007309H. Wu, Burgess-like subconvexity for, for $\mathrm{GL}_{1}$, Compos. Math. 155 (2019), no. 8, 1457–1499. MR3977317 07077744 10.1112/S0010437X19007309
Copyright © 2020 The Japan Academy
Ikuya Kaneko "The second moment for counting prime geodesics," Proceedings of the Japan Academy, Series A, Mathematical Sciences 96(1), 7-12, (January 2020). https://doi.org/10.3792/pjaa.96.002
Published: January 2020
Vol.96 • No. 1 • January 2020
Back to Top