Abstract
We show that \begin{equation*} \gcd(2!S(2n+1,2),…,(2n+1)!S(2n+1,2n+1))=\text{denominator of $B_{2n}$}, \end{equation*} where $S(n,k)$ is the Stirling number of the second kind and $B_{n}$ is the Bernoulli number.
Citation
Takao Komatsu. Florian Luca. Claudio de J. Pita Ruiz V.. "A note on the denominators of Bernoulli numbers." Proc. Japan Acad. Ser. A Math. Sci. 90 (5) 71 - 72, May 2014. https://doi.org/10.3792/pjaa.90.71
Information