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A note on the denominators of Bernoulli numbers

By Takao KOMATSU,” Florian LucA*)*** and Claudio DE J. PITA Ruiz V.***
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Abstract: We show that

ged(21S(2n +1,2),...,(2n 4+ 1)!1S(2n + 1,2n + 1)) = denominator of By,

where S(n, k) is the Stirling number of the second kind and B, is the Bernoulli number.
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1. Introduction. Let S(n,k) be the Stirling
number of the second kind, which counts the
number of partitions of a set with n elements in k
disjoint nonempty subsets. Put S(n, k) = k!S(n, k).
Let B,, be the mth Bernoulli number.

Theorem 1. The formula

ged(S(2n+1,2),...,82n+1,2n+ 1))
= denominator of Bs,,
holds.
It is interesting to note that there are already

classical formulas expressing the Bernoulli number
in terms of Stirling numbers such as

2l (DM k= 11820 + 1, k)

By, = Z L

k=1

24l (—1)ES(2n + 2, k)

=1- kZ

k=2

(see, for example, Chapter 1 in [2]). We shall not
use this formula in our argument.

Proof. We use the von Staudt—Clausen theo-
rem ([1,3]) which states that

denominator of Bs, = H p.
(p-1)|2n
We first show that the right-hand side divides each

of the numbers S(2n 4 1, k). Let p be a prime such
that p — 1| 2n. To proceed, we recall that
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Bernoulli numbers; Stirling numbers.

S(n, k) = ;iel)’”‘ ("f’)j”,

to derive that

k
(1) Stk =Y (1) <";>j2n+1'
0

j:
Let j€{1,...,2n}. By Fermat’s Little Theorem
and since p — 1 | 2n, we get
(2) 7 =4 (mod p).

Hence, inserting the above congruence (2) for j =
1,2,...,k into (1), we get

S@n+1,k) = (-1)" <I;>j (mod p).

J=0

However, the last sum above

k

(kY .

3 >0 (5)i=o
=0 J

for k > 2 as it can be seen by putting x = 1 into the

identity

This shows that the right-hand side divides the left-
hand side.

Now we show that the left-hand side divides
the right-hand side. Note that in the left-hand side,
the last term inside the ged is S(2n+1,2n+1) =
(2n + 1)!, which implies that every prime p dividing
the left-hand side satisfies p < 2n + 1. Let p’ be the
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exact power of p appearing in the left-hand side. We
show that ¢t =1 and that (p —1) | 2n, statements
which together imply the desired conclusion. We
then have

k

Ak

@ (D) =0 o,
=0 J

for k=2,...,2n+ 1. Making k = 2 in (4) above we

get

(5) — 2422 =0 (mod p).
Making k= 3 in (4) above we get
(6) 3_-3. 22n+1 + 32n+1 =90 (mod pt)’

and inserting also (5) into (6), we get the con-
gruence 3°"*!' =3 (mod p'). So, let us show by
induction on k=1,2,3,...,2n+1 that k" =
k (mod p'). Assume that k > 4 and that the above
congruences are satisfied for 1,2,...,k — 1. Formula
(4) together with the induction hypothesis implies
that

- =i (RN . | jone1 — ¢

Z(—l) "()j—l—kz "1 =0 (mod p')

=0 J
which together with the identity (3) gives that

[Vol. 90(A),

k"1 =k (mod p'). Hence, it is indeed the case
that

E =k (mod p),

for k=1,...,2n+ 1. Making k= p, we get that
p 1 =p (mod p'), showing that t=1. Finally,
since p<2n+1, it follows that 1,2,...,2n+1
cover all residue classes modulo p, therefore
we have a®""' =a (mod p) for all integers a. In
particular, a®® =1 (mod p) for all integers a co-
prime to p, implying that (p — 1) | 2n because the
multiplicative group modulo p is cyclic of order
p — 1. This concludes the proof of the theorem. [
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