Open Access
December 2012 Spectral function of Krein’s and Kotani’s string in the class $\Gamma$
Yuji Kasahara
Proc. Japan Acad. Ser. A Math. Sci. 88(10): 173-177 (December 2012). DOI: 10.3792/pjaa.88.173

Abstract

The asymptotic behavior of the spectral function of a one-dimensional second-order differential operator is discussed. We give a necessary and sufficient condition in order that the spectral function varies regularly with index 1. The condition is closely related to the class $\Gamma$ which appears in the de Haan theory.

Citation

Download Citation

Yuji Kasahara. "Spectral function of Krein’s and Kotani’s string in the class $\Gamma$." Proc. Japan Acad. Ser. A Math. Sci. 88 (10) 173 - 177, December 2012. https://doi.org/10.3792/pjaa.88.173

Information

Published: December 2012
First available in Project Euclid: 6 December 2012

zbMATH: 1284.47031
MathSciNet: MR3004234
Digital Object Identifier: 10.3792/pjaa.88.173

Subjects:
Primary: 34L05 , 47E05 , 60G51 , 60J55

Keywords: de Haan theory , diffusion , Krein’s correspondence , spectral measure , Strum-Liouville operator

Rights: Copyright © 2012 The Japan Academy

Vol.88 • No. 10 • December 2012
Back to Top