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Abstract: The asymptotic behavior of the spectral function of a one-dimensional second-

order differential operator is discussed. We give a necessary and sufficient condition in order that

the spectral function varies regularly with index 1. The condition is closely related to the class �
which appears in the de Haan theory.
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1. Introduction. The aim of the present

article is to improve one of the results in [2], where

we discussed the asymptotic behavior of the spec-

tral function of a generalized second-order differ-

ential operator.

By a string we mean a function

m : ð�1;þ1Þ �! ½0;þ1�

which is nondecreasing, right-continuous and sat-

isfies mð�1þ 0Þ ¼ 0. The Lebesgue-Stieltjes meas-

ure dmðxÞ describes the mass-distribution of the

string. For a string m, we are interested in the

spectral theory of the generalized Strum-Liouville

operator

L ¼
d

dmðxÞ
d

dx
; �1 < x < ‘;ð1Þ

where

‘ð¼ ‘ðmÞÞ ¼ supfxjmðxÞ <1g ð� þ1Þ:

Note that the operator

L ¼ aðxÞ
d2

dx2
þ bðxÞ

d

dx
ðaðxÞ > 0Þð2Þ

can be rewritten in the form (1) with a suitable

change of the variable under mild conditions on

aðxÞ and bðxÞ. For example,

L ¼
1

2

d2

dx2
þ

1

x

d

dx

� �
¼

d

2xdx
x
d

dx

� �
; x > 0

can be written in the form

L ¼
d

dx2

d

d logx
¼ d

de2s

d

ds
; s 2 Rð3Þ

with s ¼ logx.

We say that a string m has left boundary of

limit circle type if, for some c ð< ‘Þ,Z c

�1
x2dmðxÞ <1:ð4Þ

In [2] strings satisfying (4) are referred to as

Kotani’s strings. If mð�0Þ ¼ 0 then (4) is trivially

satisfied and such strings are called Krein’s string.

From the viewpoint of applications we are mainly

interested in Krein’s strings, but it is crucial that

we adopt the framework of Kotani’s strings. In what

follows we denote by Mcirc the totality of Kotani’s

strings excluding the trivial case where m vanishes

identically.

For each m 2Mcirc, we can define ’�ðxÞ,
ðx < ‘Þ, for every � 2 C, as the unique solution of

the following integral equation:

’�ðxÞ ¼ 1� �
Z x

�1
ðx� yÞ’�ðyÞ dmðyÞ; x < ‘:

Let L2
0ðð�1; ‘Þ; dmÞ denote the space of all square

integrable functions f such that Supp ðfÞ � ð�1; ‘Þ
and, for f 2 L2

0ðð�1; ‘Þ; dmÞ, we define the gener-

alized Fourier transform by

bffð�Þ ¼ Z ‘

�1
fðxÞ’�ðxÞ dmðxÞ; � > 0:

Then a nonnegative Radon measure �ðd�Þ on ½0;1Þ
is called a spectral measure if the Plancherel identity

kfkL2
0
ðð�1;‘Þ;dmÞ ¼ kbffkL2ð½0;1Þ;d�Þ

doi: 10.3792/pjaa.88.173
#2012 The Japan Academy

2000 Mathematics Subject Classification. Primary 47E05,
34L05, 60J55, 60G51.

No. 10] Proc. Japan Acad., 88, Ser. A (2012) 173

http://dx.doi.org/10.3792/pjaa.88.173


holds. S. Kotani ([3]) proved a certain one-to-one

correspondence between m 2Mcirc and the spectral

measure �ðd�Þ on ½0;1Þ such thatZ
½0;1Þ

�ðd�Þ
�2 þ 1

<1:

This correspondence is an extension of M. G.

Krein’s, which treats the case whereZ
½0;1Þ

�ðd�Þ
� þ 1

<1:

We refer to [3] or [4] for details. The function �ð�Þ :¼R
½0;x� �ðd�Þwill be referred to as the spectral function.

In [2] we studied conditions on m in order that

�ð�Þ � const� �� ð� ! þ0Þ:ð5Þ

(‘fðxÞ � gðxÞ’ means that fðxÞ=gðxÞ ! 1.) The

probabilistic meaning of the problem is as follows:

Since the transition density of the diffusion process

corresponding to (1) can be represented as

pðt; x; yÞ ¼
Z 1
�0

e�t�’�ðxÞ’�ðyÞ d�ð�Þ;ð6Þ

the condition (5) is equivalent to

pðt; x; yÞ � const � t�� ðt!1Þ

by the well-known Tauberian theorem for Laplace

transforms (see [1]).

Although [2] treated the case 0 < � < 2, the

case � ¼ 1 was somewhat exceptional and the

condition we gave there (see Theorem A below) is

rather complicated. Therefore, in the present article

we shall concentrate on the case � ¼ 1 and simplify

the condition given in [2]: Since �ð�Þ 	 � corresponds

to the string mðxÞ ¼ ex, which appeared in (3), up to

a translation, we can expect that �ð�Þ � � holds if

and only if mðxÞ 
 ex in some sense. We shall see

that such strings can be characterized by the class

� which appears in the so-called de Haan theory.

2. Main results. In what follows we assume

that m is an element of Mcirc such that ‘ðmÞ ¼ 1
and mð1 � 0Þ ¼ 1. Therefore, both mðxÞ and

m�1ðxÞ ð:¼ inffu;mðuÞ > xgÞ are finite for all large

x. Of course � denotes the spectral function of m.

Theorem 1. Let C > 0. Then,

�ð�Þ � C� ð� ! þ0Þð7Þ

holds if and only if

lim
�!1
fm�1ð�xÞ �m�1ð�Þg ¼ C logx ð8x > 0Þ:ð8Þ

A sufficient condition for ð8Þ is that mðxÞ has

continuous derivative such that

lim
x!1
ðlogmðxÞÞ0 ¼

1

C
:ð9Þ

Furthermore, if m0ðxÞ is eventually nondecreasing

(i.e., nondecreasing on ½A;1Þ; 9A > 0), then ð9Þ is

also necessary for ð8Þ.
The condition (8) implies

m�1ðxÞ � C logx ðx!1Þ

but the converse does not hold in general.

We next extend Theorem 1 so that we can treat

the case where, for example, �ð�Þ � � logð1=�Þ ð� !
þ0Þ: A function L : ðA;1Þ ! ð0;1Þ is said to be

slowly varying (at 1) if

lim
x!1

LðcxÞ
LðxÞ

¼ 1; 8c > 0:

Typical examples are LðxÞ ¼ const, logx, log logx,

exp
ffiffiffiffiffiffiffiffiffiffi
logx
p

, etc. A function of the form fðxÞ ¼
x�LðxÞ with slowly varying L is said to be regularly

varying with index � 2 R. Following [1] we denote

by R� the totality of regularly varying functions

with index �. Especially, R0 is the totality of slowly

varying functions. If L 2 R0, then ’ðxÞ :¼ xLðxÞ 2
R1 and therefore ’�1ðxÞ 2 R1. This implies that

’�1ðxÞ � xL�ðxÞ for some L� 2 R0. Such L� is called

a de Bruijin conjugate of L and is unique up to

asymptotic equivalence (see [1, p.78]). In other

words, L� is a function such that

xLðxÞL�ðxLðxÞÞ � x ðx!1Þ:

For example, if LðxÞ ¼ C then L�ðxÞ ¼ 1=C, and if

LðxÞ ¼ log x, then L�ðxÞ ¼ 1=logx. The de Bruijin

conjugate of L� is L itself.

Theorem 2. Let L 2 R0 and let L� be its

de Bruijin conjugate. Then, the following conditions

are equivalent:

�ð�Þ �
�

Lð1=�Þ ð� ! þ0Þ;ð10Þ

lim
�!1

m�1ð�xÞ �m�1ð�Þ
L�ð�Þ ¼ log x; x > 0:ð11Þ

A sufficient condition for ð11Þ is that m�1 has

continuous derivative such that

ðm�1ðxÞÞ0 �
L�ðxÞ
x

ðx!1Þ:ð12Þ
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If ðm�1Þ0 is eventually nonincreasing, then ð12Þ is

also necessary for ð11Þ.
It is an easy calculus to see that (12) is

equivalent to

ðlogmðxÞÞ0 �
1

L�ðmðxÞÞ ðx!1Þ:ð13Þ

Probabilistically the assertion of Theorem 2

can be written as follows by Karamata’s Tauberian

theorem and (6).

Corollary 1. Let X be a linear diffusion

corresponding to ð1Þ and let pðt; x; yÞ be its tran-

sition density with respect to dmðxÞ. Then,

pðt; x; yÞ � 1

tLðtÞ
ðt!1Þ

if and only if ð11Þ.
The following theorem will be useful in appli-

cations.

Theorem 3. Let m1;m2 2Mcirc and suppose

that m1ðxÞ � m2ðxÞ ðx!1Þ. Then m2 satisfies

ð11Þ if so does m1.

We postpone the proofs of Theorems 1–3 until

Section 4 and give here a few examples, which are

already proved in [2] but now the proofs are

simplified greatly.

Example 4. Let m 2Mcirc and suppose that

mðxÞ � Ax�eBx ðx!1Þ. Then we have (7) with

C ¼ 1=B. Indeed by Theorem 3 we may assume

that mðxÞ ¼ Ax�eBx for all sufficiently large x and

then

lim
x!1

m0ðxÞ
mðxÞ

¼ B:

Therefore, our assertion follows from Theorem 1.

Example 5. If mðxÞ � AeBxþ
ffiffi
x
p
ðx!1Þ,

then we have (7) with C ¼ 1=B.

Example 6. Suppose that mðxÞ � Ax�e
ffiffiffiffiffi
Bx
p

as x!1, where A;B > 0 and � 2 R. Also

let LðxÞ ¼ B=ð2 log xÞ so that L�ðxÞ ¼ 1=LðxÞ ¼
ð2 logxÞ=B. Then we may assume that mðxÞ ¼
Ax�e

ffiffiffiffiffi
Bx
p

for sufficiently large x, and we have

ðlogmðxÞÞ0 �
ffiffiffiffi
B
p

2
ffiffiffi
x
p :

Since

L�ðmðxÞÞ ¼
2

B
logmðxÞ �

2ffiffiffiffi
B
p

ffiffiffi
x
p

ðx!1Þ;

we have

ðlogmðxÞÞ0 �
1

L�ðmðxÞÞ
ðx!1Þ:

Thus (13) is satisfied, and by Theorem 2 we

conclude that

�ð�Þ � �

Lð1=�Þ
¼ 2

B
� log

1

�
ð�! þ0Þ:

3. Preliminaries. We prepare some results

on so called de Haan theory.

Definition 7. (i) The de Haan class �þ
is the totality of eventually finite functions

f : ð0;1Þ ! ½�1;1Þ for which there exists an

L 2 R0 such that

lim
�!1

fð�xÞ � fð�Þ
Lð�Þ

¼ log x; 8x > 0:ð14Þ

(ii) The class � is the totality of eventually positive

functions F : R! ½0;1Þ, nondecreasing and right-

continuous, for which there exists a measurable

function g : R! ð0;1Þ such that

lim
�!1

F ð�þ xgð�ÞÞ
F ð�Þ ¼ ex; 8x 2 R:ð15Þ

For example, logx 2 �þ and ex 2 � (with

gðxÞ ¼ 1Þ. These two classes �þ and � are closely

related as follows:

Proposition 8. (i) If f 2 �þ, then f�1 2 �.

(ii) Conversely, if F 2 �, then F�1 2 �þ.

For the proof we refer to [1, Thm.3.10.4].

(When f (or F ) is strictly increasing and continu-

ous, then the assertion is almost clear.)

Lemma 1. Let m be a string given at the

beginning of Section 2 and let L 2 R0. Also let L�

be its de Bruijin conjugate. Then the following

conditions are equivalent:

lim
�!1

1

�Lð�Þ
m

x

Lð�Þ
þ qð�Þ

� �
¼ ex; x > 0ð16Þ

for some qð�Þ.

lim
�!1

m�1ð�xÞ �m�1ð�Þ
L�ð�Þ

¼ logx; x > 0ð17Þ

Proof. Consider the inverse functions of the

both sides of (16). Then it can be written as

lim
�!1

Lð�Þfm�1ð�Lð�ÞxÞ � qð�Þg ¼ log x; x > 0;

for some qðxÞ. This is also equivalent to

lim
�!1

Lð�Þfm�1ð�Lð�ÞxÞ �m�1ð�Lð�ÞÞg ¼ log x;
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that is

lim
�!1

’ð�Þ
�
fm�1ð’ð�ÞxÞ �m�1ð’ð�ÞÞg ¼ logx;

where ’ð�Þ ¼ �Lð�Þ. In other words

lim
�!1

�

’�1ð�Þ
fm�1ð�xÞ �m�1ð�Þg ¼ logx;

which is the same as (17) because ’�1ð�Þ � �L�ð�Þ.
�

Lemma 2. Let F : R! ½0;1Þ be a nonde-

creasing function such that F ð1Þ ¼ 1, and let

L 2 R0. Also let 1=L# be its de Bruijin conjugate

of 1=L (i.e., if  ðxÞ ¼ x=LðxÞ, then  �1ðxÞ �
x=L#ðxÞ). Then the following conditions are equiv-

alent:

Lð�Þ
�

F
x

Lð�Þ þ qð�Þ
� �

! ex ð9qð�ÞÞ;ð18Þ

F�1ð�xÞ � F�1ð�Þ
L#ð�Þ ! logx:ð19Þ

Proof. The proof is essentially the same as

that of Lemma 1.

(18)

, Lð�Þ F�1 �

Lð�Þ x
� �

� F�1 �

Lð�Þ

� �� �
! logx

,
�

 ð�Þ fF
�1ð ð�ÞxÞ � F�1ð ð�ÞÞg ! logx

,
 �1ð�Þ
�
fF�1ð�xÞ � F�1ð�Þg ! log x

, (19):

�

4. Proofs of Theorems 1–3. For the given

m 2Mcirc let

MðxÞ ¼
Z x

�1
mðuÞ du; x 2 R;

NðxÞ ¼
Z x

�1
MðuÞ du

¼
1

2

Z x

�1
ðx� uÞ2 dmðuÞ

� �
; x 2 R:

Of course these functions exist under the assump-

tion (4) when ‘ðmÞ ¼ 1.

The proofs of Theorems 1 and 2 are based on

the following result in [2].

Theorem A. Let L 2 R0. Then, ð10Þ holds if

and only if

lim
�!1

Lð�Þ
�

N
x

Lð�Þ
þ qð�Þ

� �
¼ ex; 8x 2 Rð20Þ

for some qð�Þ.
Proof of Theorem 2. We first prove the

Tauberian implication. Suppose that (10) holds.

Then by Theorem A (10) we have (20). By

the monotone density convergence theorem (see

Theorem B in Appendix), (20) implies

lim
�!1

1

�
M

x

Lð�Þ þ qð�Þ
� �

¼ ex; 8x 2 R:ð21Þ

By the same argument (21) implies

lim
�!1

1

�Lð�Þm
x

Lð�Þ þ qð�Þ
� �

¼ ex; 8x 2 R:ð22Þ

Now (22) is equivalent to (11) by Lemma 1.

Next let us prove the converse. Suppose that

(11) holds. Then m�1 2 �þ and therefore by

Proposition 8 we see m 2 �, which implies M 2 �
(see [1, Cor. 3.10.7]). Repeating the same argument

we also have N 2 � so that N�1 2 �þ: i.e.,

lim
�!1

N�1ð�xÞ �N�1ð�Þ
L0ð�Þ

¼ logx; x > 0ð23Þ

for some L0 2 R0. Let L1 :¼ L#
0 ð2 R0Þ. That is

1=L1 is the de Bruijin conjugate of 1=L0. Note

that L1 ¼ L#
0 implies L#

1 ¼ L0. So, (23) is written

as

lim
�!1

N�1ð�xÞ �N�1ð�Þ
L#

1 ð�Þ
¼ logx; x > 0:ð24Þ

Therefore, by Lemma 2 this implies

lim
�!1

L1ð�Þ
�

N
x

L1ð�Þ
þ qð�Þ

� �
¼ ex;ð25Þ

for some qðxÞ. By Theorem A, this implies

�ð�Þ � �

L1ð1=�Þ
; ð�! þ0Þ:ð26Þ

Now it remains to show that L1ðxÞ � LðxÞ. Recall

that we have already proved the Tauberian impli-

cation. Therefore, (26) implies

1

L�1ð�Þ
m�1ð�xÞ �m�1ð�Þ
� �

ð27Þ

�! logx ð�!1Þ 8x > 0:

Comparing this with (11) we see that L�1ðxÞ � L�ðxÞ
and hence L1ðxÞ � LðxÞ, which completes the proof

of the Abelina implication.
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Let us next see the latter half of the theorem.

Although this fact might be familiar to some people,

we give the proof for the convenience of the reader:

If (12), then, for every fixed x > 0,

ðm�1ð�xÞÞ0 �
L�ð�xÞ
�x

�
L�ð�Þ
�x

ð�!1Þ

so that

�

L�ð�Þ
ðm�1Þ0ð�xÞ !

1

x
ð�!1Þ;ð28Þ

the convergence being locally uniform in x > 0

by the well-known property of regularly varying

functions. Since

m�1ð�xÞ �m�1ð�Þ
L�ð�Þ

¼
Z x

1

�

L�ð�Þ
ðm�1Þ0ð�uÞ du;

we can deduce from (28) that

lim
�!1

m�1ð�xÞ �m�1ð�Þ
L�ð�Þ ¼

Z x

1

du

u
¼ logx:

Thus we have (11). To see the converse, use

the monotone density convergence theorem (see

Theorem B in Appendix). �

Since Theorem 1 is just a special case of

Theorem 2, we omit the proof.

Proof of Theorem 3. In view of Theorem 2 and

Lemma 1 it is sufficient to show that m2 satisfies

(16) if so does m1 when m1ðxÞ � m2ðxÞ. However,

this is almost trivial. �

5. Appendix.

Theorem B. Let F�ðxÞ and F ðxÞ be abso-

lutely continuous functions on an interval I with

nondecreasing (or nonincreasing) derivatives f�ðxÞ
and fðxÞ, respectively. If F�ðxÞ ! F ðxÞ ð�!1Þ
for all x 2 I, then f�ðxÞ ! fðxÞ ð�!1Þ at all

continuity points x of f.

Proof. Since

f�ðxÞ �
1

�

Z xþ�

x

f�ðuÞ du ¼
1

�
fF�ðxþ �Þ � F�ðxÞg;

we have

lim sup
�!1

f�ðxÞ �
1

�
fF ðxþ �Þ � F ðxÞg

¼
1

�

Z xþ�

x

fðuÞ du;

which implies, for every � > 0,

lim sup
�!1

f�ðxÞ � fðxþ �Þ:

Therefore,

lim sup
�!1

f�ðxÞ � fðxþ 0Þ:

Similarly we have

lim inf
�!1

f�ðxÞ � fðx� 0Þ:

�
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