Open Access
June 2007 Estimates for convergence rate of an n-Ginzburg-Landau type minimizer
Yutian Lei
Proc. Japan Acad. Ser. A Math. Sci. 83(6): 83-87 (June 2007). DOI: 10.3792/pjaa.83.83

Abstract

The paper is concerned with the asymptotic analysis of a minimizer of an $n$-Ginzburg-Landau type functional. The convergence rate of the module of minimizers is presented when the parameter $\varepsilon$ goes to zero. This conclusion shows that the functional converges to $\frac{1}{n}\int|\nabla u_n|^n$ locally when $\varepsilon \to 0$, where $u_n$ is an $n$-harmonic map.

Citation

Download Citation

Yutian Lei. "Estimates for convergence rate of an n-Ginzburg-Landau type minimizer." Proc. Japan Acad. Ser. A Math. Sci. 83 (6) 83 - 87, June 2007. https://doi.org/10.3792/pjaa.83.83

Information

Published: June 2007
First available in Project Euclid: 29 August 2007

zbMATH: 1162.35314
MathSciNet: MR2355503
Digital Object Identifier: 10.3792/pjaa.83.83

Subjects:
Primary: 35B25 , 35J70 , 49K20

Keywords: $n$-Ginzburg-Landau type functional , $n$-harmonic map , asymptotic analysis , convergence rate , regularized minimizer

Rights: Copyright © 2007 The Japan Academy

Vol.83 • No. 6 • June 2007
Back to Top