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Abstract: The paper is concerned with the asymptotic analysis of a minimizer of an n-
Ginzburg-Landau type functional. The convergence rate of the module of minimizers is pre-
sented when the parameter ε goes to zero. This conclusion shows that the functional converges to
1
n

∫ |∇un|n locally when ε → 0, where un is an n-harmonic map.
Key words: n-Ginzburg-Landau type functional; asymptotic analysis; regularized mini-
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1. Introduction. Let G ⊂ Rn (n ≥ 3) be a
bounded and simply connected domain with smooth
boundary ∂G. g is a smooth map from ∂G into Sn−1

and satisfies deg(g, ∂G) = d �= 0. Without loss of
generality, we may assume d > 0. We are concerned
with the asymptotic behavior of minimizers of the
n-Ginzburg-Landau type functional

Eε(u, G) =
1
n

∫
G

|∇u|n +
1

4εn

∫
G

(1 − |u|2)2,

in the function class W = {v ∈ W 1,n(G,Rn); v|∂G =
g} when ε → 0+. In the case of n = 2, the asymp-
totic behavior of minimizers in W has been studied
in many papers such as [1, 6]. It turns out to be
that, there exist d points {ai}d

i=1 in G, such that for
any compact subset K of G \ {ai}d

i=1, there holds a
convergence

lim
ε→0

1 − |uε|2
ε2

= |∇u2|2, in Ck(K)(1.1)

for any k ≥ 1, where u2 is a harmonic map on G \
{ai}d

i=1 (cf. [1, Theorem VI.1,(11)]).
When n ≥ 3, the convergence of the minimizer

uε of Eε(u, G) in W is a problem introduced in [1].
M.C.Hong studied this problem partly (cf. [3]). He
proved that as ε → 0, there exist a subsequence uεk

of the regularized minimizer uε and {a1, a2, ..., aJ} ⊂
G, J ∈ N, such that uεk

→ un weakly in W 1,n
loc (G \

{a1, a2, ..., aJ},Rn), where un is an n-harmonic map
on G \ {a1, a2, ..., aJ}. Furthermore, [2] shows that
J = d, deg(un, aj) = 1 with all j = 1, 2, · · · , d, and
when ε → 0,
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uεk
→ un, in W 1,n

loc (G \ ∪d
i=1{ai},Rn).(1.2)

Other related work can be seen in [5, 7].
There may be several minimizers of Eε(u, G) in

W , one of which, named the regularized minimizer,
is the limit of the minimizer uτ

ε of the following reg-
ularized functional in W

Eτ
ε (u, G) =

1
n

∫
G

(|∇u|2 + τ)n/2 +
1

4εn

∫
G

(1 − |u|2)2

in the W 1,n sense when τ → 0+. Moreover, (5.4)
in [4] shows that there exists a subsequence of uτ

ε ,
which is still denoted by itself, such that

lim
τ→0

uτ
ε = uε, in C1,α

loc (G \ ∪d
i=1{ai},Rn),(1.3)

where α ∈ (0, 1). From [3, Theorem 2.2], we can also
deduce |uε| ≤ 1 on G.

In this paper, we will estimate the convergence
rate of |uε| to 1 on an arbitrary compact subset K

of G \ {aj}d
j=1 when ε → 0.

Theorem 1.1. Assume uε is a regularized
minimizer of Eε(u, G) in W . Then for any compact
subset K of G \ (∪d

j=1{aj}), there exists a positive
constant C, such that as ε ∈ (0, ε0),∫

K

|∇|uε||n +
1
εn

∫
K

(1 − |uε|2)2 ≤ Cε
2n

n2−2 ,(1.4) ∣∣∣∣
∫

K

(
1 − |uε|2

εn
− |∇uε|n

)
dx

∣∣∣∣ ≤ Cε
2

n2−2(1.5)

where ε0 is sufficiently small. Furthermore, when
ε → 0,

Eε(uε, K) → 1
n

∫
K

|∇un|n,(1.6)

where un is the n-harmonic map in (1.2).
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Remark. (i) From (5.1) in [4] and (1.3), we
can also deduce that ‖1 − |uε|2‖L∞(K) ≤ Cεn. This
is the convergence rate of 1 − |uε| to zero in the L∞

sense. Estimation (1.4) implies the convergence rate
in the W 1,n sense.

(ii) Estimation (1.5), together with (1.2), im-
plies the following conclusion as (1.1),

lim
ε→0

1 − |uε|2
εn

= |∇un|n, in L1(K).

(iii) If we notice that

Eε(u, K) = 1
n

∫
K(|∇|u||2 + |u|2|∇ u

|u| |2)n/2

+
1

4εn

∫
K

(1 − |u|2)2,

the estimation (1.4) and the convergence (1.6) show
that the energy functional Eε(uε, K) concentrates to
the term 1

n

∫
K |∇ uε

|uε| |n when ε is sufficiently small.

2. Preliminaries.
Proposition 2.1. Assume uε is a regularized

minimizer of Eε(u, G) in W . Then for any compact
subset K of G \ (∪d

j=1{aj}), there exists a positive
constant C, which is independent of ε ∈ (0, 1), such
that

Eε(uε, K) ≤ Cε2/n +
1
n

∫
K

|∇ uε

|uε| |
n.(2.1)

Proof. Choose R > 0 sufficiently small such
that B(x, 3R) ⊂ G \ (∪d

j=1{aj}). By Lemma 3.7 in
[2] we know that

|uε| ≥ 1/2, on B(x, 3R)(2.2)

as ε is sufficiently small. Thus, we can write w = uε

|uε|
on B(x, 3R). On the other hand, by Proposition 3.8
in [2], there exists a constant C > 0 (independent of
ε) such that

Eε(uε, B(x, 3R)) ≤ C.(2.3)

By (2.3) and the integral mean value theorem, there
is a constant r ∈ (2R, 3R) such that

1
n

∫
∂B(x,r)

|∇uε|n +
1

4εn

∫
∂B(x,r)

(1 − |uε|2)2

= C(R)Eε(uε, B3R \ B2R) ≤ C.(2.4)

Consider the functional

H(ρ, B) =
1
n

∫
B

(|∇ρ|2 + 1)n/2 +
1

2εn

∫
B

(1 − ρ)2,

where B = B(x, r). Clearly, the minimizer ρ1 of
H(ρ, B) in W 1,n

|uε|(B,R+ ∪ {0}) exists and solves

−div(v(n−2)/2∇ρ) =
1
εn

(1 − ρ) on B,(2.5)

ρ|∂B = |uε|,(2.6)

where v = |∇ρ|2 + 1. Since 1/2 < |uε| ≤ 1, it follows
from the maximum principle that on B,

1
2

< ρ1 ≤ 1.(2.7)

Applying (2.3) we see easily that

H(ρ1, B) ≤ H(|uε|, B)

≤ C(Eε(uε, B) + 1) ≤ C.

(2.8)

Multiplying (2.5) by (ν · ∇ρ), where ρ = ρ1, and
integrating over B, we have

−
∫

∂B

v(n−2)/2(ν · ∇ρ)2 +
∫

B

v(n−2)/2∇ρ · ∇(ν · ∇ρ)

=
1
εn

∫
B

(1 − ρ)(ν · ∇ρ),(2.9)

where ν denotes the unit outward normal vector on
∂B. Using (2.8) we obtain

(2.10)∣∣∣∣
∫

B

v(n−2)/2∇ρ · ∇(ν · ∇ρ)
∣∣∣∣ ≤ C +

1
n

∫
∂B

vn/2.

Combining (2.6), (2.4) and (2.8) we also have∣∣∣∣ 1
εn

∫
B

(1 − ρ)(ν · ∇ρ)
∣∣∣∣

≤ 1
2εn

∫
B

(1 − ρ)2|divν| + 1
2εn

∫
∂B

(1 − ρ)2

≤ C.

Substituting this and (2.10) into (2.9) yields∣∣∣∣
∫

∂B

v(n−2)/2(ν · ∇ρ)2
∣∣∣∣ ≤ C +

1
n

∫
∂B

vn/2.(2.11)

Applying (2.6), (2.4) and (2.11), we obtain that for
any δ ∈ (0, 1),∫

∂B

vn/2

=
∫

∂B

v(n−2)/2[1 + (τ · ∇ρ)2 + (ν · ∇ρ)2]

≤
∫

∂B

v(n−2)/2 +
∫

∂B

v(n−2)/2(ν · ∇ρ)2

+
(∫

∂B

vn/2

)(n−2)/n(∫
∂B

(τ · ∇|uε|)n

)2/n

≤ C(δ) +
(

1
n

+ 2δ

)∫
∂B

vn/2,
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where τ denotes the unit tangent vector on ∂B.
Hence, it follows, if we choose δ > 0 sufficiently
small, that ∫

∂B

vn/2 ≤ C.(2.12)

Now we multiply both sides of (2.5) by (1 − ρ) and
integrate over B. Then∫

B

v(n−2)/2|∇ρ|2 +
1
εn

∫
B

(1 − ρ)2

= −
∫

∂B

v(n−2)/2(ν · ∇ρ)(1 − ρ).

Using this result, Hölder’s inequality and (2.4), (2.6),
(2.7), (2.12), we obtain∫

B

v(n−2)/2|∇ρ|2 +
1
εn

∫
B

(1 − ρ)2

≤ C

∣∣∣∣
∫

∂B

vn/2

∣∣∣∣
(n−1)/n ∣∣∣∣

∫
∂B

(1 − ρ)2
∣∣∣∣
1/n

≤ C

∣∣∣∣
∫

∂B

(1 − |uε|)2
∣∣∣∣
1/n

≤ Cε.

(2.13)

Since uε is a minimizer of Eε(u, G) in W , we have
Eε(uε, G) ≤ Eε(U, G), where

U = ρ1, w on B,

(
w =

uε

|uε|
)

;

U = uε on G \ B.

Hence

Eε(uε, B) ≤ Eε(ρ1w, B)

=
1
n

∫
B

(|∇ρ1|2 + ρ2
1|∇w|2)n/2

+
1

4εn

∫
B

(1 − ρ2
1)

2.

(2.14)

From the mean value theorem, it is deduced that∫
B

(|∇ρ1|2 + ρ2
1|∇w|2)n/2dx

−
∫

B

(ρ2
1|∇w|2)n/2dx

=
n

2

∫
B

∫ 1

0

[((|∇ρ1|2 + ρ2
1|∇w|2)s

+ρ2
1|∇w|2(1 − s))(n−2)/2]ds|∇ρ1|2dx

≤ C

∫
B

(|∇ρ1|n + |∇ρ1|2|∇w|n−2)dx.

(2.15)

According to Theorem 1.1 in [4], there exists a con-
stant C = C(R) > 0, which is independent of ε, such
that

sup
B3R

|∇uε| ≤ C(R).(2.16)

Using (2.2) and (2.16), from (2.13) we can deduce
that ∫

B

(|∇ρ1|n + |∇ρ1|2|∇w|n−2)

≤
∫

B

(|∇ρ1|n + 4n−2|∇ρ1|2|uε|n−2|∇w|n−2)

≤ C

∫
B

(|∇ρ1|n + |∇ρ1|2) ≤ C(ε + ε2/n).

Combining this with (2.14), (2.15), and using (2.13),
we can derive

Eε(uε, B) ≤ 1
n

∫
B

ρn
1 |∇w|n + Cε2/n.

Noting (2.7), we can see (2.1) by an argument of the
finite covering.

3. Proof of Theorem 1.1.
Proof of (1.4). Assume uε is a regularized

minimizer, and B = B(x, r) is the ball introduced in
§2. By Jensen’s inequality, we have

Eε(uε, B) ≥ 1
n

∫
B

|∇h|n +
1
n

∫
B

hn|∇w|n

+
1

4εn

∫
B

(1 − h2)2,

where h = |uε| and w = uε

|uε| . Thus, from (2.1) it
follows that,

1
n

∫
B

|∇h|n +
1
n

∫
B

(hn − 1)|∇w|n

+
1

4εn

∫
B

(1 − h2)2

≤ Eε(uε, B) − 1
n

∫
B

|∇w|n ≤ Cε2/n.

(3.1)

Using (2.2) and (2.16), we have
1
n

∫
B

(1 − hn)|∇w|n

≤ 4n

n

∫
B

(1 − hn)|∇uε|n

≤ C(R)εn/2(
1
εn

∫
B

(1 − h2)2)1/2.

(3.2)

From (2.3) it follows
1
n

∫
B

(1 − hn)|∇w|n ≤ Cεn/2.(3.3)
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Applying Young’s inequality to (3.2), we also see that
for any δ ∈ (0, 1),

1
n

∫
B

(1 − hn)|∇w|n

≤ δ

(
1
εn

∫
B

(1 − h2)2
)

+ C(δ)εn.

(3.4)

Substituting this into (3.1), we get∫
B

|∇h|n +
1
εn

∫
B

(1 − h2)2 ≤ C(εn + ε2/n).

Based on this result, we can prove (1.4) by induction.
Assume for some j ≥ 1, rj ∈ (2R, r) such that

1
εn

∫
B(x,rj)

(1 − h2)2 ≤ Cεn + Cε
2
n

�j
i=1( 2

n2 )i−1

holds. Thus, by the integral mean value theorem,
there exists a constant rj+1 ∈ (2R, rj) such that

1
εn

∫
∂B(x,rj+1)

(1 − h2)2

≤ C(R)ε
2
n

�j
i=1(

2
n2 )i−1

.

(3.5)

Denote Bj+1 = B(x, rj+1) and consider the func-
tional

H(ρ, Bj+1) =
1
n

∫
Bj+1

[
(|∇ρ|2 + 1)n/2 +

1
2εn

(1 − ρ)2
]

.

Of course, the functional H(ρ, Bj+1) achieves its
minimum in W 1,n

|uε|(Bj+1,R+ ∪ {0}) at a function
ρj+1. By the same derivation of (2.13), we can also
deduce from (3.5) that∫

Bj+1

v(n−2)/2|∇ρj+1|2 +
1
εn

∫
Bj+1

(1 − ρj+1)2

≤ C

∣∣∣∣∣
∫

∂Bj+1

(1 − |uε|)2
∣∣∣∣∣
1/n

≤ Cε
�j+1

i=1 ( 2
n2 )i−1

.

Thus, the result (2.1) can be improved as

Eε(uε, Bj+1) ≤ Cε
2
n

�j+1
i=1 ( 2

n2 )i−1
+

1
n

∫
Bj+1

|∇w|n.

Applying Jensen’s inequality and (3.4), we may
rewrite (3.1) as

1
n

∫
Bj+1

|∇h|n +
1

4εn

∫
Bj+1

(1 − h2)2

≤ Cε
2
n

�j+1
i=1 ( 2

n2 )i−1
+

1
n

∫
Bj+1

(1 − hn)|∇w|n

≤ Cε
2
n

�j+1
i=1 ( 2

n2 )i−1
+ C(δ)εn

+δ

(
1
εn

∫
Bj+1

(1 − h2)2
)

for any δ ∈ (0, 1). If we choose δ small enough, then∫
Bj+1

|∇h|n +
1
εn

∫
Bj+1

(1 − h2)2

≤ Cε
2
n

�j+1
i=1 ( 2

n2 )i−1
+ Cεn.

(3.6)

In view of this, we can see that (3.6) always holds
for any j ≥ 1. Letting j → ∞, we have∫

B2R

|∇h|n +
1
εn

∫
B2R

(1 − h2)2

≤ Cε
2
n

�∞
i=1(

2
n2 )i−1

+ Cεn ≤ Cε
2n

n2−2 .

Thus (1.4) can be proved easily.
Proof of (1.5). Obviously, the minimizer uτ

ε

of the regularized functional Eτ
ε (u, G) in W satisfies

the Euler-Lagrange equation

−div(v(n−2)/2∇u) =
1
εn

u(1 − |u|2), in G,

where v = |∇u|2 + τ . Taking the inner product of
both sides of the system above with u, we have

−div(v(n−2)/2∇u)u =
1
εn

|u|2(1 − |u|2),

where u = uτ
ε . Combining this with ∇(|u|2) = 2u ·

∇u, and

−div(v(n−2)/2∇u)u

= −div(v(n−2)/2u · ∇u) + v(n−2)/2|∇u|2

we obtain

1
εn

|u|2(1 − |u|2)

= v(n−2)/2|∇u|2 − 1
2
div(v(n−2)/2∇(|u|2)).

Adding 1
εn (1 − |u|2)2 to both sides of the equality

above, we get

1
εn

(1 − |u|2) − v(n−2)/2|∇u|2

=
1
εn

(1 − |u|2)2

−1
2
div(v(n−2)/2∇(|u|2)).

(3.7)

Similar to the derivations of (2.4), from (1.4), we can
deduce that ∫

∂B

|∇|uτ
ε ||n ≤ Cε

2n
n2−2 ,(3.8)
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where B is some ball in B(x, 3R) \ B(x, 2R). Inte-
grating (3.7) over B, we have∣∣∣∣

∫
B

[
1
εn

(1 − |u|2) − v(n−2)/2|∇u|2
]∣∣∣∣

≤ 1
εn

∫
B

(1 − |u|2)2 +
1
2

∣∣∣∣
∫

∂B

v(n−2)/2∇(|u|2)dζ

∣∣∣∣ .
Letting τ → 0, and using (1.3) we can see that∣∣∣∣

∫
B

[
1
εn

(1 − |uε|2) − |∇uε|n
]∣∣∣∣

≤ 1
εn

∫
B

(1 − |uε|2)2

+
1
2

∣∣∣∣
∫

∂B

|∇uε|n−2∇(|uε|2)dζ

∣∣∣∣ .
By applying (1.4), Hölder’s inequality and (2.16),
(3.8), we get∣∣∣∣

∫
B

[
1
εn

(1 − |uε|2) − |∇uε|n
]∣∣∣∣ ≤ Cε

2
n2−2 .

Thus (1.5) is deduced by an argument of the finite
covering.

Proof of (1.6). At first, (3.1) implies

0 ≤ Eε(uε, B) − 1
n

∫
B

|∇w|n

+
1
n

∫
B

(1 − hn)|∇w|n

≤ Cε2/n +
1
n

∫
B

(1 − hn)|∇w|n.

Combining this with (3.3), and letting ε → 0, we
have

Eε(uε, B) − 1
n

∫
B

|∇w|n → 0.(3.9)

Next, we observe that∣∣∣∣
∫

B

(|∇uε|n − |∇w|n)dx

∣∣∣∣
≤
∣∣∣∣
∫

B

(|∇uε|n − hn|∇w|n)
∣∣∣∣

+
∣∣∣∣
∫

B

|∇w|n(1 − hn)
∣∣∣∣

= I1 + I2.

(3.10)

In view of (3.3), we have limε→0 I2 = 0. In addition,
the mean value theorem implies

I1 ≤ C

∫
B

(∫ 1

0

[s|∇h|2

+ (1 − s)h2|∇w|2](n−2)/2ds

)
|∇h|2dx

≤ C

(∫
B

|∇uε|n
)(n−2)/n(∫

B

|∇h|ndx

)2/n

.

This result, together with (2.3) and (1.4), implies
limε→0 I1 = 0. Substituting these into (3.10), and
using (1.2) we deduce that

lim
ε→0

∫
B

|∇w|n =
∫

B

|∇un|n.

Combining this with (3.9) yields (1.6).
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