Open Access
April 2015 A comparison principle and applications to asymptotically $p$-linear boundary value problems
Dang Dinh Hai
Osaka J. Math. 52(2): 393-409 (April 2015).

Abstract

Consider the problems \begin{equation*} \left\{ \begin{array}{@{}ll@{}} -\Delta_{p}u=f\ \text{in}\ \Omega{,} & u=0\ \text{on}\ \partial \Omega,\\ -\Delta_{p}v=g\ \text{in}\ \Omega{,} & v=0\ \text{on}\ \partial \Omega, \end{array} \right. \end{equation*} where $\Omega$ is a bounded domain in $\mathbb{R}^{n}$ with smooth boundary $\partial \Omega$, $\Delta_{p}z=\mathrm{div}(\lvert\nabla z\rvert^{p-2}\nabla z)$, $p>1$. We prove a strong comparison principle that allows $f-g$ to change sign. An application to singular asymptotically $p$-linear boundary problems is given.

Citation

Download Citation

Dang Dinh Hai. "A comparison principle and applications to asymptotically $p$-linear boundary value problems." Osaka J. Math. 52 (2) 393 - 409, April 2015.

Information

Published: April 2015
First available in Project Euclid: 24 March 2015

zbMATH: 1325.35042
MathSciNet: MR3326617

Subjects:
Primary: 35J70 , 35J95

Rights: Copyright © 2015 Osaka University and Osaka City University, Departments of Mathematics

Vol.52 • No. 2 • April 2015
Back to Top