Open Access
2016 Implicit Definability in Arithmetic
Stephen G. Simpson
Notre Dame J. Formal Logic 57(3): 329-339 (2016). DOI: 10.1215/00294527-3507386
Abstract

We consider implicit definability over the natural number system N,+,×,=. We present a new proof of two theorems of Leo Harrington. The first theorem says that there exist implicitly definable subsets of N which are not explicitly definable from each other. The second theorem says that there exists a subset of N which is not implicitly definable but belongs to a countable, explicitly definable set of subsets of N. Previous proofs of these theorems have used finite- or infinite-injury priority constructions. Our new proof is easier in that it uses only a nonpriority oracle construction, adapted from the standard proof of the Friedberg jump theorem.

References

1.

[1] Ash, C. J., and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, vol. 144 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 2000. MR1767842[1] Ash, C. J., and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, vol. 144 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 2000. MR1767842

2.

[2] Cole, J. A., and S. G. Simpson, “Mass problems and hyperarithmeticity,” Journal of Mathematical Logic, vol. 7 (2007), pp. 125–43. MR2423947 10.1142/S0219061307000652[2] Cole, J. A., and S. G. Simpson, “Mass problems and hyperarithmeticity,” Journal of Mathematical Logic, vol. 7 (2007), pp. 125–43. MR2423947 10.1142/S0219061307000652

3.

[3] Feferman, S., “Some applications of the notions of forcing and generic sets,” Fundamenta Mathematicae, vol. 56 (1964/1965), pp. 325–45. MR176925[3] Feferman, S., “Some applications of the notions of forcing and generic sets,” Fundamenta Mathematicae, vol. 56 (1964/1965), pp. 325–45. MR176925

4.

[4] Fokina, E. B., S.-D. Friedman, and A. Törnquist, “The effective theory of Borel equivalence relations,” Annals of Pure and Applied Logic, vol. 161 (2010), pp. 837–50. MR2601014 10.1016/j.apal.2009.10.002[4] Fokina, E. B., S.-D. Friedman, and A. Törnquist, “The effective theory of Borel equivalence relations,” Annals of Pure and Applied Logic, vol. 161 (2010), pp. 837–50. MR2601014 10.1016/j.apal.2009.10.002

5.

[5] Gerdes, P. M., “Harrington’s solution to McLaughlin’s conjecture and non-uniform self-moduli,” preprint,  arXiv:1012.3427v2 [math.LO]. 1012.3427v2[5] Gerdes, P. M., “Harrington’s solution to McLaughlin’s conjecture and non-uniform self-moduli,” preprint,  arXiv:1012.3427v2 [math.LO]. 1012.3427v2

6.

[6] Harrington, L. A., “Arithmetically incomparable arithmetic singletons,” handwritten, 28 pp., April 1975.[6] Harrington, L. A., “Arithmetically incomparable arithmetic singletons,” handwritten, 28 pp., April 1975.

7.

[7] Harrington, L. A., “McLaughlin’s conjecture,” handwritten, 11 pp., September 1976.[7] Harrington, L. A., “McLaughlin’s conjecture,” handwritten, 11 pp., September 1976.

8.

[8] Hinman, P. G., and T. A. Slaman, “Jump embeddings in the Turing degrees,” Journal of Symbolic Logic, vol. 56 (1991), pp. 563–91. MR1133085 10.2307/2274700[8] Hinman, P. G., and T. A. Slaman, “Jump embeddings in the Turing degrees,” Journal of Symbolic Logic, vol. 56 (1991), pp. 563–91. MR1133085 10.2307/2274700

9.

[9] Montalbán, A., “There is no ordering on the classes in the generalized high/low hierarchies,” Archive for Mathematical Logic, vol. 45 (2006), pp. 215–31. MR2209744 10.1007/s00153-005-0304-0[9] Montalbán, A., “There is no ordering on the classes in the generalized high/low hierarchies,” Archive for Mathematical Logic, vol. 45 (2006), pp. 215–31. MR2209744 10.1007/s00153-005-0304-0

10.

[10] Odifreddi, P., Classical Recursion Theory, Vol. II, vol. 143 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1999. MR1718169[10] Odifreddi, P., Classical Recursion Theory, Vol. II, vol. 143 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1999. MR1718169

11.

[11] Rogers, H., Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967. MR224462[11] Rogers, H., Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967. MR224462

12.

[12] Sacks, G. E., “On a theorem of Lachlan and Martin,” Proceedings of the American Mathematical Society, vol. 18 (1967), pp. 140–41. MR207558 10.1090/S0002-9939-1967-0207558-7[12] Sacks, G. E., “On a theorem of Lachlan and Martin,” Proceedings of the American Mathematical Society, vol. 18 (1967), pp. 140–41. MR207558 10.1090/S0002-9939-1967-0207558-7

13.

[13] Sacks, G. E., Higher Recursion Theory, vol. 2 of Perspectives in Mathematical Logic, Springer, Berlin, 1990. MR1080970[13] Sacks, G. E., Higher Recursion Theory, vol. 2 of Perspectives in Mathematical Logic, Springer, Berlin, 1990. MR1080970

14.

[14] Simpson, M. F., “Arithmetic degrees: Initial segments, $\omega$-REA operators and the $\omega$-jump (recursion theory),” Ph.D. dissertation, Cornell University, Ithaca, N.Y., 1985.[14] Simpson, M. F., “Arithmetic degrees: Initial segments, $\omega$-REA operators and the $\omega$-jump (recursion theory),” Ph.D. dissertation, Cornell University, Ithaca, N.Y., 1985.

15.

[15] Tanaka, H., “A property of arithmetic sets,” Proceedings of the American Mathematical Society, vol. 31 (1972), pp. 521–24. MR286661 10.1090/S0002-9939-1972-0286661-1[15] Tanaka, H., “A property of arithmetic sets,” Proceedings of the American Mathematical Society, vol. 31 (1972), pp. 521–24. MR286661 10.1090/S0002-9939-1972-0286661-1
Copyright © 2016 University of Notre Dame
Stephen G. Simpson "Implicit Definability in Arithmetic," Notre Dame Journal of Formal Logic 57(3), 329-339, (2016). https://doi.org/10.1215/00294527-3507386
Received: 3 September 2013; Accepted: 8 January 2014; Published: 2016
Vol.57 • No. 3 • 2016
Back to Top